metricas
covid
Buscar en
Enfermedades Infecciosas y Microbiología Clínica
Toda la web
Inicio Enfermedades Infecciosas y Microbiología Clínica Antibiotic resistance patterns of Acinetobacter calcoaceticus–A. baumannii com...
Información de la revista
Vol. 31. Núm. 3.
Páginas 142-146 (marzo 2013)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
6731
Vol. 31. Núm. 3.
Páginas 142-146 (marzo 2013)
Original Article
Acceso a texto completo
Antibiotic resistance patterns of Acinetobacter calcoaceticusA. baumannii complex species from Colombian hospitals
Patrones de resistencia a antibióticos de especies del complejo Acinetobacter calcoaceticusA. baumannii de hospitales en Colombia
Visitas
6731
María Teresa Regueroa,
Autor para correspondencia
, Olga Esther Medinaa, María Andrea Hernándeza,b, Diana Vanessa Flóreza, Emilia María Valenzuelaa, José Ramón Mantillaa
a Instituto de Biotecnología, Universidad Nacional de Colombia-Sede Bogotá, Bogotá, Colombia
b Mycology and Phytopathology Laboratory, Universidad de los Andes, Bogotá, Colombia
Este artículo ha recibido
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Tablas (3)
Table 1. Primers used for detection of resistance-related genes.
Table 2. Antibiotic – resistance profile in Acinetobacter sp.
Table 3. Resistance genes and QRDR mutations in Acinetobacter sp.
Mostrar másMostrar menos
Abstract
Introduction

Only automated phenotypic methods are currently used in Colombian hospitals for identifying isolates of the Acinetobacter calcoaceticusA. baumannii complex (ACB). The phenotypical similarities in these species mean that they cannot be differentiated by manual or automated methods, thereby leading to their identification as A. baumannii, or ACB complex in clinical settings. Our objective was to identify to the species level 60 isolates, from four hospitals, evaluate their antibiotic susceptibility, and detect resistance-related genes.

Methods

16S–23S rRNA internal transcribed spacer (ITS) region and rpoB gene partial sequences were amplified. Resistance genes for cephalosporin, carbapenem and aminoglycoside were detected by PCR. Possible mutations in the quinolone resistance-determining region (QRDR) were evaluated. The association of ISAba-1 with blaOXA and blaADC genes was determined by PCR. Amplification products of ITS region, rpoB gene and some resistance genes were sequenced and compared using the BLAST tool.

Results

16S–23S rRNA ITS region and partial rpoB gene sequence analysis allowed 51isolates to be identified as A. baumannii, 8 as A. nosocomialis, and 1 isolate as A. pitti. A. baumannii isolates were highly resistant to all antibiotics tested, while the others were susceptible to ciprofloxacin and ampicillin/sulbactam. Quinolone resistance, found only in A. baumannii, was associated with mutations in the QRDR region of gyrA and parC genes.

Conclusion

This is the first investigation in Colombia that has identified ACB complex species using molecular methods, and determined differences in antibiotic resistance and resistance genes among the species. It is of the highest importance to identify isolates to the species level for future resistance and epidemiology studies in our region.

Keywords:
Acinetobacter infections
Acinetobacter baumannii
DNA intergenic
Multidrug resistance genes
Resumen
Introducción

Actualmente, los hospitales en Colombia utilizan únicamente métodos fenotípicos automatizados para la identificación de aislamientos del complejo Acinetobacter calcoaceticus – baumannii (ACB). La similitud entre estas especies no permite que se diferencien por métodos fenotípicos ya sean estos manuales o automatizados, llevando a que los aislamientos se identifiquen como A. baumannii o como pertenecientes al complejo ACB en las instituciones hospitalarias. Nuestro objetivo fue identificar a nivel de especie, 60 aislamientos de cuatro hospitales, identificados como del complejo ACB, evaluar su resistencia a antibióticos y detectar genes de resistencia.

Métodos

Para la identificación de especies se amplificaron la región intergénica espaciadora de los genes 16S y 23S rRNA y la secuencia parcial del gen rpoB. Estos amplificados y algunos genes de resistencia se secuenciaron y se compararon utilizando la herramienta BLAST. Se detectaron por PCR genes de resistencia a cefalosporinas, carbapenemes y aminoglicósidos. Se evaluaron posibles mutaciones en la región determinante de resistencia a quinolonas (QRDR). Se determinó por PCR la asociación de ISAba-1con los genes blaOXA y blaADC.

Resultados

Con las secuencias de la región ITS 16S-23S rRNA y el gen rpoB, se identificaron 51 aislamientos como A. baumannii, 8 como A. nosocomialis y 1 como A. pittii. A. baumannii fue altamente resistente a todos los antibióticos ensayados. Las otras dos especies fueron susceptibles a ciprofloxacina y amplicilina/sulbactam. La resistencia a quinolonas se detectó únicamente en A. baumannii y se asoció con mutaciones en la región QRDR de los genes gyrA y parC.

Conclusiones

Esta es la primera investigación en Colombia que identificó especies del complejo ACB usando métodos moleculares y determinó diferencias en la resistencia a antibióticos y en los genes de resistencia entre las especies. La identificación de los aislamientos a nivel de especie es de importancia para futuros estudios de resistencia y epidemiología en nuestra región.

Palabras clave:
Infecciones por Acinetobacter
Acinetobacter baumannii
ADN intergénico
Genes MDR
Texto completo
Introduction

Acinetobacter calcoaceticusA. baumannii complex comprises four genomic species: A. calcoaceticus, A. baumannii, A. nosocomialis (formerly genomic species 13TU1) and A. pittii (formerly genomic species 31). Except for A. calcoaceticus, the other three species represent an important health threat as they are emerging as multidrug-resistant pathogens.2

As all these species are very close, genetically related, and difficult to identify by phenotypical methods using routine laboratory methods, it has been generally accepted to refer to them as a group (ACB complex),2 although differences among them regarding their antibiotic resistance, epidemiology and pathogenicity have been also well documented.3–5 Molecular methods as 16S–23S rRNA internal transcribed spacer (ITS) region analysis and rpoB gene fragment sequence analysis have been adopted for their identification.6

Regarding the antibiotic resistance, results from the SENTRY Antimicrobial Surveillance Program for Latin America and Brazil 1997–2001 indicate that resistant Gram-negative bacteria are much prevalent in Latin America than in North America and Europe. One of the main antimicrobial resistance problems is given by MDR (multidrug resistant) non-fermentative Gram-negative bacteria (Acinetobacter spp. and Pseudomonas aeruginosa).7 This problem is also referred by Casellas,8 indicating that species conforming ACB complex are resistant to a wide variety of antimicrobials as beta-lactams, fluoroquinolones, and aminoglycosides.

Previous studies carried out in Colombia focused on Acinetobacter spp. have shown high resistance to beta-lactams, aminoglycosides and quinolones, and an increasingly and concerning resistance to carbapenems.9,10

The purpose of this study was to establish by using molecular approaches, the species from representative ACB complex strains isolated from patients hospitalized in four Colombian hospitals, their antibiotic resistance patterns and the presence of genes associated with resistance to four different groups of antibiotics.

Methods

From an initial collection of 150 isolates obtained during 2004, 2005, 2007 and 2009 from hospitalized patients in 4 Colombian hospitals, we selected 60 isolates previously identified by automated systems (Vitek Biomérieux, Marcy-l’Etoile, France) as ACB complex isolates and with diverse antibiotic-resistance patterns. Isolates were tested for susceptibility to cefotaxime, ceftazidime, cefepime, imipenem, meropenem, aztreonam, ampicillin–sulbactam, piperacillin–tazobactam, amoxicillin–clavulanic acid, ciprofloxacin, amikacin, gentamicin and nalidixic acid by disk diffusion method, and using CLSI interpretive standards.11

All isolates were representatives of clones with less than 75% similarity as evaluated by repetitive extragenic palindromic PCR (REP-PCR). Some of them were representatives of clones with more than one isolates.

The 16S–23S rRNA internal transcribed spacer (ITS) region was amplified for each isolate and for the A. baumannii ATCC 19606 strain, according to the conditions established by Chang et al.6 The partial sequence of the rpoB gene was also amplified for all isolates that were not identified as A. baumannii and for some isolates identified by ITS as A. baumannii, according to conditions previously established.12

Genes codifying for resistance to cephalosporins, carbapenems and aminoglycosides were detected by PCR (Table 1). The strategy established by Vila et al. was used for detecting possible mutations in the quinolone resistance-determining region (QRDR).19,20 The association of ISAba-1 sequences with blaOXA and blaADC genes was also determined by PCR. Amplification was done with forward primer for insertion sequence and reverse primer for blaADC gene and blaOXA, respectively. Sequencing service was contracted with an external third party (Macrogen, Korea). Sequencing was done by single primer extension with an ABI Prism 3730xI-PE Applied Biosystems platform and resulting sequences were compared with sthose available on the Genbank.

Table 1.

Primers used for detection of resistance-related genes.

Genes  Primers 5′–3′  Annealing temperature (°C)  References 
blaADC  ADC-7F: ATGCGATTTAAAAAAATTTCTTGTADC-7R: TTATTTCTTTATTGCATTCAG  55  12 
blaSHV  SHV F: ATGCGTTATATTCGCCTGTGSHV R: TGCTTTGTTATTCGGGCCAA  58  13 
blaTEM  TEM F: AAACGCTGGTGAAAGTATEM R: AGCGATCTGTCTAT  48  13 
blaCTX-M  CTX-MA: CGCTTTGCGATGTGCAGCTX-MB: ACCGCGATATCGTTGGT  55  14 
blaVIM  VIM1-F GTTAAAAGTTATTAGTAGTTTATTGVIM1-R CTACTCGGCGACTGAGCVIM2-F ATGTTCAAACTTTTGAGTAAGVIM2-R CTACTCAACGACTGAGCG  57  15 
blaIMP  IMP1-F ATGAGCAAGTTATCTGTATTCIMP1-R TTAGTTGCTTGGTTTTGATGGIMP2-F ATGAAGAAATTATTTGTTTTATGIMP2-R TTAGTTACTTGGCTGTGATG  57  15 
blaOXA-23  F: GATCGGATTGGAGAACCAGAR: ATTTCTGACCGCATTTCCAT  53  16 
blaOXA-24  F: GGTTAGTTGGCCCCCTTAAAR: AGTTGAGCGAAAAGGGGATT  53  16 
blaOXA-51  F: TAATGCTTTGATCGGCCTTGR: TGGATTGCACTTCATCTTGG  53  16 
blaOXA-58  F: AAGTATTGGGGCTTGTGCTGR: CCCCTCTGCGCTCTACATAC  53  16 
aacA4  aacA4F:ATGACTGAGCATGACCTTGCG aacA4R:TTAGGCATCACTGCGTGTTCG  65  12 
aacC1  aacC1-5′:ATGGGCATCATTCGCACATGTAGGaacC1-3′:TTAGGTGGCGGTACTTGGGTC  64  12 
aphA6  aphA6 F: ATGGAATTGCCCAATATTATTCaphA6 R: TCAATTCAATTCATCAAGTTTTA  55  12 
aacC2  aacC2F:ATGCATACGCGGAAGGCAATAACaacC2 R: CTAACCGGAAGGCTCGCAAG  65  12 
armarmA-F: ATTCTGCCTATCCTAATTGGarmA-R:ACCTATACTTTATCGTCGTC  52  17 
gyrgyrA-1: AAATCTGCCCGTGTCGTTGGTgyrA-2: GCCATACCTACGGCGATACC  55  18 
parparC-1: AAACCTGTTCAGCGCCGCATTparC-2: AAAGTTGTCTTGCCATTCACT  55  19 
ISAba-1  ISab1 F: ATGCAGCGCTTCTTTGCAGG  55  20 

A. baumannii strain ATCC 19606 was used as a positive control in detection assays of the blaOXA-51 and blaADC genes, the ITS region, the rpoB gene fragment as well as a positive control for the restriction of the QRDR region of both gyrA and parC genes. Klebsiella pneumoniae strain 363 (from our laboratory) was used as a positive control for blaTEM, blaSHV and blaCTX-M genes.

PCR products from ITS region, rpoB gene, some resistance genes and gyrA and parC genes were sequenced in both chains in an external facility (Macrogen, Korea). Each sequence was compared with public databases using the BLAST tool (available at: http://blast.ncbi.nlm.nih.gov/Blast.cgi).

Results

Fifty-one out of the sixty isolates were identified as A. baumannii, eight as A. nosocomialis and one isolate was identified as A. pittii. ITS sequences revealed 99% to 100% similarity with those deposited in Genbank.

Isolates displayed different resistance patterns (Table 2). Antibiotics were grouped into six categories as follows: beta-lactams (cefotaxime, ceftazidime, cefepime, and aztreonam); carbapenems (imipenem, meropenem); beta-lactam/inhibitor combination (ampicillin–sulbactam, piperacillin–tazobactam, amoxicillin–clavulanic acid); quinolones (ciprofloxacin); aminoglycosides (amikacin, gentamicin) and nalidixic acid. According with definitions by Magiorakos et al.,21 46 isolates (all A. nosocomialis, the A. pittii and 37 A. baumannii) were classified as multidrug-resistant (MDR), 3 A. baumannii as extensively drug-resistant (XDR) and 10 A. baumannii as pandrug-resistant (PDR). Only one A. baumannii isolate was sensitive to all antibiotics tested except for nalidixic acid.

Table 2.

Antibiotic – resistance profile in Acinetobacter sp.

  Isolates per species
  A. baumannii n=51 (%)  A. nosocomialis n=8 (%)  A. pittii n=1 (%)  Total resistant isolates n=60 (%) 
Antibiotic
Cefotaxime  50 (98)  8 (100)  1 (100)  59 (98) 
Ceftazidime  44 (86)  8 (100)  52 (86) 
Cefepime  43 (84)  4 (50)  47 (78) 
Piperacillin/tazobactam  44 (86)  4 (50)  1 (100)  49 (81) 
Ampicillin/sulbactam  40 (78)  40 (66) 
Aztreonam  49 (96)  6 (75)  1 (100)  56 (93) 
Imipenem  39 (76)  3 (37)  42 (70) 
Meropenem  39 (76)  3 (37)  42 (70) 
Ciprofloxacin  44 (86)  44 (73) 
Amikacin  35 (68)  4 (50)  1 (100)  40 (66) 
Gentamicin  42 (82)  5 (62)  1 (100)  48 (80) 

All A. nosocomialis were resistant to ceftazidime and aztreonam and susceptible to ampicillin/sulbactam and ciprofloxacin. A. pittii was resistant to five antibiotics and was sensitive to ceftazidime, cefepime, ampicillin/sulbactam, imipenem, meropenem and ciprofloxacin.

Regarding the betalactams resistance, genes detected were blaADC, blaTEM, and blaOXA. The blaADC gene was identified in all A. baumannii isolates (Table 3). Thirty-eight out of the 44 ceftazidime-resistant isolates had the ISAba-1 sequence upstream of this gene. The remaining (6/44) had the blaADC gene but no association with ISAba-1. Analysis of amplified blaADC sequences exhibited 100% of similarity with the blaADC-5 gene. Only one of the A. nosocomialis strains had the blaADC gene, but this was not associated with the ISAba-1 sequence. This gene was not detected in A. pittii. blaTEM genes were detected in 40 A. baumannii and in 2 A. nosocomialis isolates. The narrow spectrum TEM-1 enzyme-encoding gene was identified by sequence in some of these isolates. blaOXA genes from families 23, 51 and 58 were detected in the isolates studied; blaOXA-23 was detected in A. baumannii and A.nosocomialis and was found to be associated with the ISAba-1 sequence in all carbapenem-resistant isolates. blaOXA-23 was also detected in a carbapenem-sensitive A. nosocomialis strain, but the ISAba-1 sequence was not found upstream of the gene.

Table 3.

Resistance genes and QRDR mutations in Acinetobacter sp.

  A. baumannii (n=51)  A. nosocomialis (n=8)  A. pittii (n=1)  Genes (n=60) (%) 
Antibiotic
Cephalosporins
blaTEM  40    42 (70) 
blaADC  51    52 (87) 
ISAba1-ADC  38      38 (63) 
blaOXA-23  39    43 (72) 
blaOXA-51  51      51 (85) 
blaOXA-58      1 (2) 
ISAba1-OXA-23  39    42 (70) 
Aminoglycosides
aacC1  11    12 (20) 
aacC2  44  50 (83) 
aphA6    5 (8) 
Quinolones
gyrA Ser 83  44      44 (73) 
par C Ser 80  44      44 (73) 

The blaOXA-51 gene was only detected in A. baumannii and blaOXA-58 only in A. pittii. Those were not associated with ISAba-1.

Genes encoding aminoglycoside-modifying enzymes were detected: aacC2 (83.3%), aacC1 (20%) and aphA6 (8.3%). The aacC2 gene was found in members of the three species, most of which were resistant to gentamicin. The aphA6 gene was found exclusively in those amikacin-resistant species other than baumannii.

The 44 ciprofloxacin-resistant A. baumannii isolates presented mutations in codons 83 and 80 of gyrA and parC genes, respectively. The sequences of some of the amplified products which were not digested with Hinf1 had Ser 83 to Leu changes in gyrA and Ser 83 to Tyr changes in parC.

Discussion

Some authors consider that identification to the species level is necessary for monitoring resistance in each species and for establishing possible differences in clinical manifestations and outcomes for patients infected by Acinetobacter sp. belonging to the ACB complex.22

A. baumannii was the most frequently genomic species detected in the four hospitals studied, followed by A. nosocomialis. Only one isolate was identified as A. pittii. We found differences in resistance patterns according with the species in our study. A. baumannii isolates exhibited the three resistance categories (MDR, XDR and PDR), while some A. nosocomialis were susceptible to cefepime, beta-lactams/inhibitor combination, aminoglycosides and ciprofloxacin. Ciprofloxacin and ampicillin/sulbactam susceptibility observed in A. nosocomialis may give an option for the treatment of infections caused by this microorganism. This susceptibility in species other than baumannii coincided with that observed in other investigations.21,22 Presence of aphA6 gene exclusively in amikacin-resistant isolates of A. nosocomialis and A. pittii contrasted with what has been observed in other studies, where this gene has been found in a high percentage of A. baumannii.23 Resistance to third-generation cephalosporins was related to the ISAba-1-blaADC association in most of the isolates. This association has been especially documented in A. baumannii where such sequence provides a strong promoter for the overexpression of this gene.24,25

All the imipenem and meropenem resistant isolates had the ISAba-1-blaOXA 23 association. This constitutes the most disseminated mechanism of resistance to carbapenems in Acinetobacter sp. and some studies have shown that this association is enough to achieve resistance to this group of antibiotics. One A. nosocomialis that was sensitive to imipenem had the gene but it was not associated with the insertion sequence, thereby reaffirming the role of this IS in the overexpression of genes downstream of it.25

The blaOXA-51 gene was only identified in A. baumannii consistently with established by some authors who consider such gene to be species-specific in A. baumannii.22,26

The blaOXA-58 gene, was detected for the first time in Colombia only in the A. pittii identified in this study, although it has been previously detected in this species.27,28 The detection of OXA carbapenemases has been rare in species other than A. baumannii in previous studies.22 In this study the blaOXA genes were detected in the other two species.

All the ciprofloxacin-resistant A. baumannii strains presented mutations in QRDR codons 83 and 80 in gyrA and parC genes and this is the main mechanism associated with resistance to quinolones as previously reported in other studies.19,20

High resistance to aminoglycosides was observed in the three species and the aacC2 gene was associated with resistance to gentamicin. The aacC1 gene was detected only in resistant isolates and concomitantly with aacC2 genes. The aphA6 gene, which confers resistance to amikacin and gentamicin, was only found in A. nosocomialis and A. pittii that were resistant to both gentamicin and amikacin. Resistance to amikacin in A. baumannii however, could not be explained with this gene evaluation. Other genes encoding aminoglycoside-modifying enzymes, as well as other non-enzymatic mechanisms, could be responsible for resistance to amikacin in A. baumannii. The absence of aphA6 gene in our A. baumannii strains contrasted with those from European clones I and II where this gene is found together with other aminoglycoside-resistant ones.23

This is the first report in Colombia that use molecular methods for differentiating species from the ACB complex and establish the presence of A.nosocomialis and A. pittii in hospitals in Colombia. The differences found in species susceptibility and molecular basis of that resistance, lead us to recommend that molecular techniques should be implemented in studies of surveillance of antibiotic resistance in members of the ACB complex.

Funding

Financial resources for this research came from Departamento Administrativo de Ciencia, Tecnología e Innovación – Colciencias (contrato 110145221066) and Universidad Nacional de Colombia, Dirección de Investigación– sede Bogotá (DIB).

Conflicts of interest

Authors state that there does not exist any personal or financial relationship that may have caused a conflict of interest regarding this manuscript.

Acknowledgements

Authors wish to thank Departamento Administrativo de Ciencia, Tecnología e Innovación – Colciencias (contrato 110145221066) and Universidad Nacional de Colombia, Dirección de Investigación– sede Bogotá (DIB), for the finantial support to this research.

Thanks also to the microbiology teams of the participating hospitals for supplying the bacterial isolates and for their valuable contributions to this work.

References
[1]
A. Nemec, L. Krizova, M. Maixnerova, T. van der Reijden, P. Deschaght, V. Passet, et al.
Genotypic and phenotypic characterization of the Acinetobacter calcoaceticusAcinetobacter baumannii complex with the proposal of Acinetobacter pittii sp. nov (formerly Acinetobacter genomic species 3) and Acinetobacter nosocomialis sp. nov. (formerly Acinetobacter genomic species 13TU).
Res Microbiol, 162 (2011), pp. 393-404
[2]
Y.-C. Lee, Y.-T. Huang, C.-K. Tan, Y.-W. Kuo, C.-H. Liao, P.-I. Lee, et al.
Acinetobacter baumannii and Acinetobacter genospecies 13TU and 3 bacteraemia: comparison of clinical features, prognostic factors and outcomes.
J Antimicrob Chemother, 66 (2011), pp. 1839-1846
[3]
L. Dijkshoorn, A. Nemec, H. Seifert.
An increasing threat in hospitals: multidrug-resistance Acinetobacter baumannii.
Nat Rev Microbiol, 5 (2007), pp. 939-951
[4]
E.T. Houang, Y.W. Chu, K.Y. Chu, K.C. Ng, C.M. Leung, A.F. Cheng.
Significance of genomic DNA group delineation in comparative studies of antimicrobial susceptibility of Acinetobacter spp.
Antimicrob Agents Chemother, 47 (2003), pp. 1472-1475
[5]
Y.M. Lim, K.S. Shin, J. Kim.
Distinct antimicrobial resistance patterns and antimicrobial resistance-harboring genes according to genomic species of Acinetobacter isolates.
J Clin Microbiol, 45 (2007), pp. 902-905
[6]
H.C. Chang, Y.F. Wei, L. Dijkshoorn, M. Vaneechoutte, C.T. Tang, T.C. Chang.
Species-level identification of isolates of the Acinetobacter calcoaceticusAcinetobacter baumannii complex by sequence analysis of the 16S–23S rRNA gene spacer region.
J Clin Microbiol, 43 (2005), pp. 1632-1639
[7]
H.S. Sader, R.N. Jones, A.C. Gales, J.B. Silva, A.C. Pignatari, SENTRY Participants Group (Latin America).
SENTRY Antimicrobial Surveillance Program Report: Latin American and Brazilian results for 1997 through 2001.
Braz J Infect Dis, 8 (2004), pp. 25-79
[8]
J.M. Casellas.
Resistencia a los antibacterianos en América Latina: consecuencias para la infectología.
Rev Panam Salud Publica, 30 (2011), pp. 519-528
[9]
M.V. Villegas, J.N. Kattan, A. Correa, K. Lolans, A.M. Guzman, N. Woodford, et al.
Dissemination of Acinetobacter baumannii clones with OXA-23 Carbapenemase in Colombian hospitals.
Antimicrob Agents Chemother, 51 (2007), pp. 2001-2004
[10]
J. Pinzón, J.R. Mantilla, E.M. Valenzuela, F. Fernández, C.A. Álvarez, E.J. Osorio.
Caracterización molecular de aislamientos de Acinetobacter baumannii provenientes de la unidad de quemados de un hospital de tercer nivel de Bogotá.
Infectio, 10 (2006), pp. 71-78
[11]
CLSI.
Performance standards for antimicrobial susceptibility testing; twenty-first informational supplement. CLSI document M100-S21.
Clinical and Laboratory Standards Institute, (2011),
[12]
V.A. Gundi, L. Dijkshoorn, S. Burignat, D. Raoult, B. La Scola.
Validation of partial rpoB gene sequence analysis for the identification of clinically important and emerging Acinetobacter species.
Microbiology, 155 (2009), pp. 2333-2341
[13]
K.M. Hujer, A.M. Hujer, E.A. Hulten, S. Bajaksouzian, J.M. Adams, C.J. Donskey, et al.
Analysis of Antibiotic Resistance Genes in Multidrug-Resistant Acinetobacter sp. isolates from military and civilian patients treated at the Walter Reed Army Medical Center.
Antimicrob Agents Chemother, 50 (2006), pp. 4114-4123
[14]
D.L. Paterson, K.M. Hujer, A.M. Hujer, B. Yeiser, M.D. Bonomo, L.B. Rice, et al.
Extended-spectrum β-lactamases in Klebsiella pneumoniae bloodstream isolates from seven countries: dominance and widespread prevalence of SHV- and CTX-M-Type β-lactamases.
Antimicrob Agents Chemother, 47 (2003), pp. 3554-3560
[15]
R.J. Bonnet, L.M. Sampaio, R. Labia, C. De Champs, D. Sirot, C. Chanal, et al.
A novel CTX-M β-lactamase (CTX-M-8) in cefotaxime-resistant Enterobacteriaceae isolated in Brazil.
Antimicrob Agents Chemother, 44 (2000), pp. 1936-1942
[16]
O. Gutiérrez, C. Juan, E. Cercenado, F. Navarro, E. Bouza, P. Coll, et al.
Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa from Spanish hospitals.
Antimicrob Agents Chemother, 51 (2007), pp. 4329-4335
[17]
N. Woodford, M.J. Ellington, J.M. Coelho, J.F. Turton, M.E. Ward, S. Brown, et al.
Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp.
Int J Antimicrob Agents, 7 (2006), pp. 351-353
[18]
Y. Doi, Y. Arakawa.
16S ribosomal RNA methylation: emerging resistance mechanism against aminoglycosides.
Clin Infect Dis, 45 (2007), pp. 88-94
[19]
J. Vila, J. Ruiz, P. Goñi, A. Marcos, T. Jimenez de Anta.
Mutation in the gyrA gene of quinolone-resistant clinical isolates of Acinetobacter baumannii.
Antimicrob Agents Chemother, 39 (1995), pp. 1201-1203
[20]
J. Vila, J. Ruiz, P. Goñi, T. Jimenez de Anta.
Quinolone-resistance mutations in the topoisomerase IV parC gene of Acinetobacter baumannii.
J Antimicrob Chemother, 39 (1997), pp. 757-762
[21]
A.P. Magiorakos, A. Srinivasan, R.B. Carey, Y. Carmeli, M.E. Falagas, C.G. Giske, et al.
Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance.
Clin Microbiol Infect, 18 (2012), pp. 268-281
[22]
W.C. Ko, N.Y. Lee, S.C. Su, L. Dijkshoorn, M. Vaneechoutte, L.R. Wang, et al.
Oligonucleotide array-based identification of species in the Acinetobacter calcoaceticusA. baumannii complex in isolates from blood cultures and antimicrobial susceptibility testing of the isolates.
J Clin Microbiol, 46 (2008), pp. 2052-2059
[23]
J.F. Turton, J. Shah, C. Ozongwu, R. Pike.
Incidence of Acinetobacter species other than A. baumannii among clinical isolates of Acinetobacter: evidence for emerging species.
J Clin Microbiol, 48 (2010), pp. 1445-1449
[24]
A. Nemec, L. Dolzani, S. Brisse, P. van den Broek, L. Dijkshoorn.
Diversity of aminoglycoside-resistance genes and their association with class 1 integrons among strains of Pan-European Acinetobacter baumannii clones.
J Med Microbiol, 53 (2004), pp. 1233-1240
[25]
P.D. Mugnier, L. Poirel, P. Nordmann.
Functional analysis of insertion sequence ISAba1, responsible for genomic plasticity of Acinetobacter baumannii.
J Bacteriol, 191 (2009), pp. 2414-2418
[26]
C. Héritier, L. Poirel, P. Nordmann.
Cephalosporinase over-expression resulting from insertion of ISAba1 in Acinetobacter baumannii.
Clin Microbiol Infect, 12 (2006), pp. 123-130
[27]
Y.T. Lee, J.F. Turton, T.L. Chen, R.C. Wu, W.C. Chang, C.P. Fung, et al.
First identification of blaOXA-51 like in non-baumannii Acinetobacter spp.
J Chemother, 21 (2009), pp. 514-520
[28]
S. Marti, J. Sanchez-Céspedes, M.D. Blasco, M. Ruiz, P. Espinal, V. Alba, et al.
Characterization of the carbapenem-hydrolyzing oxacillinase OXA-58 in an Acinetobacter Genospecies 3 Clinical Isolate.
Antimicrob Agents Chemother, 52 (2008), pp. 2955-2958
Copyright © 2012. Elsevier España, S.L.. All rights reserved
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos