metricas
covid
Buscar en
Enfermedades Infecciosas y Microbiología Clínica
Toda la web
Inicio Enfermedades Infecciosas y Microbiología Clínica Fisiopatología de la enfermedad cardiovascular en pacientes con VIH
Información de la revista
Vol. 27. Núm. S1.
Enfermedad cardiovascular e infección por VIH
Páginas 33-39 (septiembre 2009)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 27. Núm. S1.
Enfermedad cardiovascular e infección por VIH
Páginas 33-39 (septiembre 2009)
Acceso a texto completo
Fisiopatología de la enfermedad cardiovascular en pacientes con VIH
Physiopathology of cardiovascular disease in HIV-infected patients
Visitas
5608
Carlos Alonso-Villaverde Lozano
Unidad VIH, Servicio de Medicina Interna, Centre de Recerca Biomèdica, Hospital Universitario San Juan de Reus, Reus, Tarragona, España
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas
Resumen

El paciente infectado por el virus de la inmunodeficiencia humana presenta una incidencia incrementada de episodios cardiovasculares relacionados con la arteriosclerosis. El virus es capaz de replicar en la pared arterial, lo que implica una disfunción inflamatoria severa, la cual, cuando se acompaña de los trastornos metabólicos asociados a la infección y a su tratamiento hace que la placa de ateroma presente una progresión acelerada. El virus tiene una alta replicación en los linfocitos T CD4+ que se instalan en el espacio subendotelial. Éstos producen proteínas virales com Tat que inducirán la síntesis de quimiocinas como MCP-1 o moléculas de adhesión VCAM-1. Esta combinación atraerá a monocitos para que se instalen en el espacio subendotelial que, además, penetrarán de forma más rápida cuando están infectados. También se infectarán las células musculares lisas, lo que producirá el inicio de la disfunción endotelial. La dislipemia y la resistencia a la insulina provocarán la modificación de lipoproteínas, las cuales serán fagocitadas mediante el receptores CD36 por los macrófagos del espacio subendotelial. EL transporte reverso del colesterol estará dañado, ya que la proteína viral Nef es capaz de bloquear el receptor ABCA1 de las lipoproteínas de alta densidad. Estos acontecimientos producirán un acúmulo rápido de colesterol en el núcleo de la placa de ateroma. Posteriormente, la placa se complicará, bien por rotura o por erosión. En este momento se formará un trombo yuxtalesional, donde la plaqueta se activa.

Palabras clave:
VIH
Linfocitos T CD4+
MCP-1
Ateroma
RANTES
Abstract

Patients with HIV have an increased risk of cardiovascular events related to arteriosclerosis. The virus is able to replicate in the arterial wall, implying severe inflammatory dysfunction. When this inflammatory dysfunction is accompanied by the metabolic disorders associated with HIV infection and its treatment, progression of the atheroma plaque is accelerated. HIV shows high replication in CD4+ T lymphocytes, which accumulate in the subendothelial space. CD4+ T lymphocytes produce viral proteins such as Tat, which leads to synthesis of chemokines such as monocyte chemoattractant protein-1 (MCP-1) or vascular cell adhesion molecule-1. This combination will attract monocytes into the subendothelial space, which penetrate rapidly if infected. These monocytes will also infect the smooth muscle cells, producing the initiation of endothelial dysfunction. Dyslipidemia and insulin resistance will then provoke modification of lipoproteins, which will be phagocytized through CD36 receptors by macrophages of the subendothelial space. Reverse cholesterol transport will be damaged, since the Nef viral protein is able to block the ABCA1 receptor. These events will produce rapid cholesterol accumulation in the atheroma plaque nucleus. Subsequently, the plaque will become complicated, either by rupture or erosion. Then, a juxtalesional thrombus is formed, where the platelet is activated.

Keywords:
HIV
CD4+ T lymphocytes
MCP-1
Atheroma
RANTES
El Texto completo está disponible en PDF
Bibliografía
[1.]
V.A. Triant, H. Lee, C. Hadigan, S.K. Grinspoon.
Increased acute myocardial infarction rates and cardiovascular risk factors among patients with human immunodeficiency virus disease.
J Clin Endocrinol Metab, 92 (2007), pp. 2506-2512
[2.]
N. Obel, H.F. Thomsen, G. Kronborg, C.S. Larsen, P.R. Hildebrandt, H.T. Sørensen, et al.
Ischemic heart disease in HIV infected and HIV-uninfected individuals: a population- baserd cohort study.
Clin Infect Dis, 44 (2007), pp. 1625-1631
[3.]
P.Y. Hsue, J.C. Lo, A. Franklin, A.F. Bolger, J.N. Matin, S.G. Deeks, et al.
Progression of atherosclerosis as assessed by carotid intim-media thickness in patients with HIV infection.
Circulation, 109 (2004), pp. 1603-1608
[4.]
P. Mercie, R. Thiebaut, V. Aurillac-Lavignolle, J.L. Pellegrin, M.C. Yvorra-Vives, C. Cipriano, et al.
Carotid intima-media thickness is slightly increased over time in HIV-1-infected patients.
HIV Medicine, 6 (2005), pp. 380-387
[5.]
R.G. Micheletti.
Coronary atherosclerotic lesions in human immunodeficiency virus- infected patients: a histopathologic study.
Cardiovasc Pathol, 18 (2009), pp. 28-36
[6.]
P. Libby, P.M. Ridker, A. Maseri.
Inflammation and atherosclerosis.
Circulation, 105 (2002), pp. 1135-1143
[7.]
P. Libby.
Changing concepts of atherogenesis.
J Intern Med, 247 (2000), pp. 349-358
[8.]
H.H. Birdsall, J. Trial, H.J. Lin, D.M. Green, G.W. Sorrentino, E.B. Siwak, et al.
Transendothelial migration of lymphocytes from HIV-1-infected donors: a mechanism for extravascular dissemination of HIV-1.
J. Immunol, 158 (1997), pp. 5968-5977
[9.]
M. Arese, C. Ferrandi, L. Primo, G. Camussi, F. Bussolino.
HIV-1 Tat protein stimulates in vivo vascular permeability and lymphomononuclear cell recruitment.
J Immunol, 166 (2001), pp. 1380-1388
[10.]
J. Choi, J. Walker, K. Talbert-Slagle, P. Wright, J.S. Pober, L. Alexander.
Endothelial cells promote human immunodeficiency virus replication in nondividing memory T cells via Nef-, Vpr-, and T-cell receptor-dependent activation of NFAT.
[11.]
I.W. Park, J.F. Wang, J.E. Groopman.
HIV-1 Tat promotes monocyte chemoattractant protein-1 secretion followed bytransmigration of monocytes.
Blood, 97 (2001), pp. 352-358
[12.]
K. Liu, D.S. Chi, C. Li, H.K. Hall, D.M. Milhorn, G. Krishnaswamy.
HIV-1 Tat protein-induced VCAM-1 expression in human pulmonary artery endothelial cells and its signaling.
Am J Physiol Lung Cell Mol Physiol, 289 (2005), pp. L252-L260
[13.]
H.H. Birdsall, W.J. Porter, D.M. Green, J. Rubio, J. Trial, R.D. Rossen.
Impact of fibronectin fragments on the transendothelial migration of HIV-infected leukocytes and the development of subendothelial foci of infectious leukocytes.
J Immunol, 173 (2004), pp. 2746-2754
[14.]
A. Zernecke, E. Shagdarsuren, C. Weber.
Chemokines in atherosclerosis.
Arterioscler Thromb Vasc Biol, 28 (2008), pp. 1897-1908
[15.]
E.A. Eugenin, S. Morgello, M.E. Klotman, A. Mosoian, P.A. Lento, J.W. Berman, et al.
Human immunodeficiency virus (HIV) infects human arterial smooth muscle cells in vivo and in vitro. Implications for the pathogenesis of HIV-mediated vascular disease.
Am J Pathol, 172 (2008), pp. 1100-1111
[16.]
A. Chauhan, S. Hahn, S. Gartner, C.A. Pardo, S.K. Netesan, J. McArthur, et al.
Molecular programming of endothelin-1 in HIV-infected brain: role of Tat in up-regulation of ET-1 and its inhibition by statins.
FASEB J, 21 (2007), pp. 777-789
[17.]
G.D. Kanmogne, C. Primeaux, P. Grammas.
Induction of apoptosis and endothelin-1 secretion in primary human lung endothelial cells by HIV-1 gp120 proteins.
Biochem Biophys Res Commun, 333 (2005), pp. 1107-1115
[18.]
F. Böhm, J. Pernow.
The importance of endothelin-1 for vascular dysfunction in cardiovascular disease.
Cardiovasc Res, 76 (2007), pp. 8-18
[19.]
B. Jiang, V.Y. Hebert, J.H. Zavecz, T.R. Dugas.
Antiretrovirals induce direct endothelial dysfunction in vivo.
J Acquir Immune Defic Syndr, 42 (2006), pp. 391-395
[20.]
M. Al-Qaisi, R.K. Kharbanda, T.K. Mittal, A.E. Donald.
Measurement of endothelial function and its clinical utility for cardiovascular risk.
Vasc Health Risk Manag, 4 (2008), pp. 647-652
[21.]
J.J. Blanco, I.S. García, J.G. Cerezo, J.M. De Rivera, P.M. Anaya, P.G. Raya, et al.
Endothelial function in HIV-infected patients with low or mild cardiovascular risk.
J Antimicrob Chemother, 58 (2006), pp. 133-139
[22.]
A. Woods, D. Brull, S. Humphries, H. Montgomery.
Genetics of inflammation and risk of coronary artery disease: the central role of interleukin-6.
Eur Heart J, 21 (2000), pp. 1574-1583
[23.]
J. Dressman, J. Kincer, S.V. Matveev, L. Guo, R.N. Greenberg, T. Guerin, et al.
HIV protease inhibitors promote atherosclerotic lesion formation independent of dyslipidemia by increasing CD36-dependent cholesteryl ester accumulation in macrophages.
J Clin Invest, 111 (2003), pp. 389-397
[24.]
B. Schieffer, E. Schieffer, D. Hilfiker-Kleiner, A. Hilfiker, P. Konaven, M. Kaartinen, et al.
Expression of angiotensin II and interleukin 6 in human coronary atherosclerotic plaques.
Circulation, 101 (2000), pp. 1372-1378
[25.]
J.A. De Lemos, D.A. Morrow, M.S. Sabatine, S.A. Murphy, C.M. Gibson, E.M. Antman, et al.
Association between plasma levels of monocyte chemoattractant protein-1 and long-term clinical outcomes in patients with acute coronary syndromes.
Circulation, 107 (2003), pp. 690-695
[26.]
H. Kervinen, M. Manttari, M. Kaartinen, H. Mäkynen, T. Palosuo, K. Pulkki, et al.
Prognostic usefulness of plasma monocyte/macrophage and T-lymphocyte activation markers in patients with acute coronary syndromes.
Am J Cardiol, 94 (2004), pp. 993-996
[27.]
M. Nian, P. Lee, N. Khaper, P. Liu.
Inflammatory cytokines and postmyocardial remodeling.
[28.]
P. Ridker, N. Rifai, M. Pfeffer, F. Sacks, S. Lepage, E. Braunwald.
Elevation of tumor necrosis factor-alpha and increased risk of coronary events after myocardial infarction.
Circulation, 101 (2000), pp. 2149-2153
[29.]
P. Libby.
Inflammation in atherosclerosis.
Nature, 420 (2002), pp. 868-874
[30.]
Z. Mallat, A. Corbaz, A. Scoazec, S. Besnard, G. Leseche, Y. Chvatchko, et al.
Expression of interleukin-18 in human atherosclerotic plaques and relation to plaque instability.
Circulation, 104 (2001), pp. 1598-1603
[31.]
S. Blankenberg, L. Tiret, C. Bickel, D. Peetz, F. Cambien, J. Meyer, et al.
Interleukin-18 is a strong predictor of cardiovascular death in stable and unstable angina.
Circulation, 106 (2002), pp. 24-30
[32.]
C. Heeschen, S. Dimmeler, C. Hamm, S. Fichtlscherer, E. Boersma, M. Simoons, et al.
Serum level of the antiinflammatory cytokine interleukin-10 is an important prognostic determinant in patients with acute coronary syndromes.
Circulation, 107 (2003), pp. 2109-2114
[33.]
P.M. Ridker.
Clinical application of C-reactive protein for cardiovascular disease detection and prevention.
Circulation, 107 (2003), pp. 363-369
[34.]
S.M. Boekholdt, R.J. Peters, C.E. Hack, N.E. Day, R. Luben, S.A. Bingham, et al.
IL-8 plasma concentrations and the risk of future coronary artery disease in apparently healthy men and women: the EPIC-Norfolk prospective population study.
Arterioscler Thromb Vasc Biol, 24 (2004), pp. 1503-1508
[35.]
E. Cavusoglu, C. Eng, V. Chopra, L.T. Clark, D.J. Pinsky, J.D. Marmur.
Low plasma RANTES levels are an independent predictor of cardiac mortality in patients referred for coronary angiography.
Arterioscler Thromb VascBiol, 27 (2007), pp. 929-935
[36.]
P.H. Dessein, B.I. Joffe, S. Singh.
Biomarkers of endothelial dysfunction, cardiovascular risk factors and atherosclerosis in rheumatoid arthritis.
Arthritis Res Ther, 7 (2005), pp. R634-R643
[37.]
I. Shai, T. Pischon, F.B. Hu, A. Ascherio, N. Rifai, E.B. Rimm.
Soluble intercellular adhesion molecules, soluble vascular cell adhesion molecules, and risk of coronary heart disease.
Obesity (Silver Spring), 14 (2006), pp. 2099-2106
[38.]
J. Dressman, J. Kincer, S.V. Matveev, L. Guo, R.N. Greenberg, T. Guerin, et al.
HIV protease inhibitors promote atherosclerotic lesion formation independent of dyslipidemia by increasing CD36-dependent cholesteryl ester accumulation in macrophages.
J Clin Invest, 111 (2003), pp. 389-397
[39.]
H.N. Ginsberg.
Lipoprotein physiology.
Endocrinol Metab Clin North Am, 27 (1998), pp. 503-519
[40.]
J.L. Cracowskia.
Isoprostanes, emerging biomarkers and potential mediators in cardiovascular diseases.
European Heart Journal, 25 (2004), pp. 1675-1678
[41.]
S. Parra, C. Alonso-Villaverde, B. Coll, N. Ferré, J. Marsillach, G. Aragonès, et al.
Serum paraoxonase-1 activity and concentration are influenced by human immunodeficiency virus infection.
Atherosclerosis, 194 (2007), pp. 175-181
[42.]
Z. Mujawar, H. Rose, M.P. Morrow, T. Pushkarsky, L. Dubrovsky, N. Mukhamedova, et al.
Human immunodeficiency virus impairs reverse cholesterol transport from macrophages.
[43.]
G. Ndrepepa, S. Braun, J. Mehilli, N. Von Beckerath, A. Schömig, A. Kastrati.
Myeloperoxidase level in patients with stable coronary artery disease and acute coronary syndromes.
Eur J Clin Invest, 38 (2008), pp. 90-96
[44.]
N. Martinelli, D. Girelli, O. Olivieri, P. Guarini, A. Bassi, E. Trabetti, et al.
Novel serum paraoxonase activity assays are associated with coronary artery disease.
Clin Chem Lab Med, 47 (2009), pp. 432-440
[45.]
Z. Mallat, J. Benessiano, T. Simon, S. Ederhy, C. Sebella-Arguelles, A. Cohen, et al.
Circulating secretory phospholipase A2 activity and risk of incident coronary events in healthy men and women: the EPIC-Norfolk study.
Arterioscler Thromb Vasc Biol, 27 (2007), pp. 1177-1183
[46.]
A. Zalewski, C. Macphee.
Role of lipoprotein-associated phospholipase A2 in atherosclerosis biology, epidemiology, and possible therapeutic target.
Arteriosclerosis, Thrombosis, and Vascular Biology, 25 (2005), pp. 923
[47.]
M.L. Muzzio, V. Miksztowicz, F. Brites, D. Aguilar, E.M. Repetto, R. Wikinski, et al.
Metalloproteases 2 and 9, Lp-PLA(2) and lipoprotein profile in coronary patients.
Arch Med Res, 40 (2009), pp. 48-53
[48.]
J.L. Cracowskia.
Isoprostanes, emerging biomarkers and potential mediators in cardiovascular diseases.
European Heart Journal, 25 (2004), pp. 1675-1678
[49.]
M. Yano, S. Nakamuta, M. Shiota, H. Endo, H. Kido.
Gatekeeper role of 14-3-3tau protein in HIV-1 gp120-mediated apoptosis of human endothelial cells by inactivation of Bad.
[50.]
A. Borgne-Sánchez, S. Dupont, A. Langonné, L. Baux, H. Lecoeur, D. Chauvier, et al.
Targeted Vpr-derived peptides reach mitochondria to induce apoptosis of alpha- Vbeta3-expressing endothelial cells.
Cell Death Differ, 14 (2007), pp. 422-435
[51.]
B. Jiang, V.Y. Hebert, Y. Li, J.M. Mathis, J.S. Alexander, T.R. Dugas.
HIV antiretroviral drug combination induces endothelial mitochondrial dysfunction and reactive oxygen species production, but not apoptosis.
Toxicol Appl Pharmacol, 224 (2007), pp. 60-71
[52.]
P. Libby.
Molecular and cellular mechanisms of the thrombotic complications of atherosclerosis.
J Lipid Res, 50 (2009), pp. S352-S357
[53.]
P.A. Holme, F. Müller, N.O. Solum, F. Brosstad, S.S. Frøland, P. Aukrust.
Enhanced activation of platelets with abnormal release of RANTES in human immunodeficiency virus type 1 infection.
FASEB J, 12 (1998), pp. 79-89
[54.]
U.M. Vischer.
Von Willebrand factor, endothelial dysfunction, and cardiovascular disease.
J Thromb Haemost, 4 (2006), pp. 1186-1193
[55.]
T.T. Keller, D. Choi, C. Nagel, H. Te Velthuis, V.E. Gerdes, N.J. Wareham, et al.
Tissue factor serum levels and the risk of future coronary artery disease in apparently healthy men and women: the EPIC-Norfolk prospective population study.
J Thromb Haemost, 4 (2006), pp. 2391-2396
[56.]
B. Wiman, T. Andersson, J. Hallqvist, C. Reuterwall, A. Ahlbom, U. DeFaire.
Plasma levels of tissue plasminogen activator/plasminogen activator inhibitor-1 complex and von Willebrand factor are significant risk markers for recurrent myocardial infarction in the Stockholm Heart Epidemiology Program (SHEEP) Study.
Arteriosclerosis, Thrombosis, and Vascular Biology, 20 (2000), pp. 2019
[57.]
M.L. Muzzio, V. Miksztowicz, F. Brites, D. Aguilar, E.M. Repetto, R. Wikinski, et al.
Metalloproteases 2 and 9, Lp-PLA(2) and lipoprotein profile in coronary patients.
Arch Med Res, 40 (2009), pp. 48-53
[58.]
C. Heeschen, S. Dimmeler, C.W. Hamm, M.J. Van den Brand, E. Boersma, A.M. Zeiher, CAPTURE Study Investigators, et al.
Soluble CD40 ligand in acute coronary syndromes.
N Engl J Med, 348 (2003), pp. 1104-1111
[59.]
T. Temelkova-Kurktschiev, C. Koehler, E. Henkel, M. Hanefeld.
Leukocyte count and fibrinogen are associated with carotid and femoral intima-media thickness in a risk population for diabetes.
Cardiovasc Res, 56 (2002), pp. 277-283
[60.]
J.A. Páramo, O. Beloqui, C. Roncal, A. Benito, J. Orbe.
Validation of plasma fibrinogen as a marker of carotid atherosclerosis insubjects free of clinical cardiovascular disease.
Haematologica, 89 (2004), pp. 1226-1231
[61.]
B. Coll, S. Parra, C. Alonso-Villaverde, G. Aragonés, M. Montero, J. Camps, et al.
The role of immunity and inflammation in the progression of atherosclerosis in patients with HIV infection.
Stroke, 38 (2007), pp. 2477-2484
Copyright © 2009. Elsevier España S.L.. Todos los derechos reservados
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos