metricas
covid
Buscar en
Enfermedades Infecciosas y Microbiología Clínica
Toda la web
Inicio Enfermedades Infecciosas y Microbiología Clínica Multilocus sequence typing: el marcador molecular de la era de Internet
Información de la revista
Vol. 22. Núm. 2.
Páginas 113-120 (febrero 2004)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 22. Núm. 2.
Páginas 113-120 (febrero 2004)
Acceso a texto completo
Multilocus sequence typing: el marcador molecular de la era de Internet
Multilocus sequence typing: the molecular marker of the Internet era
Visitas
16577
Julio A Vázqueza,1
Autor para correspondencia
jvazquez@isciii.es

Correspondencia: Dr. J.A. Vázquez. Laboratorio de Referencia de Neisserias. Servicio de Bacteriología. Centro Nacional de Microbiología. Instituto de Salud Carlos III. Ctra. Majadahonda, s/n. 28220 Majadahonda. Madrid. España.
, Sonsoles Berrónb
a Laboratorio de Referencia de Neisserias
b Laboratorio de Referencia de Neumococos. Servicio de Bacteriología. Centro Nacional de Microbiología. Instituto de Salud Carlos III. Majadahonda. Madrid. España
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas

La epidemiología global o a largo plazo tiene como objetivo el trazado preciso de los procesos de dispersión de líneas clonales, asociadas a altos niveles de virulencia, a determinada resistencia o a multirresistencia frente a uno o varios agentes antimicrobianos, etc. Por lo tanto, un sistema de tipificación aplicado a este nivel, debe producir resultados que sean fácilmente intercambiables entre laboratorios alejados geográficamente entre sí, así como detectar las diferentes líneas clonales incluso en presencia de bajos niveles de variabilidad acumulada en el genoma. Un marcador basado en secuencia de ADN puede producir unos resultados objetivos (secuencias de letras) que son fácilmente almacenados en bases de datos accesibles mediante Internet. La aplicación de una estrategia similar a la ya utilizada en el análisis de isoenzimas, con la secuenciación de fragmentos variables de genes housekeeping seleccionados va a permitir obtener una visión global de la distribución de los principales complejos clonales en la población analizada, además de trazar su proceso de dispersión.

Palabras clave:
MLST
Epidemiología molecular
Líneas clonales

Global or longer term epidemiology track the spread of clonal lineages, associated with hipervirulence or resistance or multi-resistance to antimicrobial agents. Therefore, the application of a molecular typing system for this purpose should produce data easily shared by different and geographically distant laboratories, as well as distinguish those clonal lineages even with low levels of variability accumulated in the genome. A marker based on the DNA sequence will produce objective results easily organized in data bases accessible by Internet. The application of a similar strategy that was used in the analysis of isoenzymes, by sequencing variable fragments of selected housekeeping genes, will allow obtaining a general view of the distribution of the clonal lineages and tracking their spread.

Key words:
MLST
Molecular epidemiology
Clonal lineages
El Texto completo está disponible en PDF
Bibliografía
[1.]
A.J. Pollard, S.R. Dobson.
Emerging infectious diseases in the 21st century.
Curr Opin Infect Dis, 13 (2000), pp. 265-275
[2.]
F.C. Tenover, J.M. Hughes.
The challenges of emerging infectious diseases. Development and spread of multiply-resistant bacterial pathogens.
JAMA, 275 (1996), pp. 300-304
[3.]
J.M. Smith, E.J. Feil, N.H. Smith.
Population structure and evolutionary dynamics of pathogenic bacteria.
[4.]
F.C. Tenover, R.D. Arbeit, R.V. Goering, P.A. Mickelsen, B.E. Murray, D.H. Persing.
Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing.
J Clin Microbiol, 33 (1995), pp. 2233-2239
[5.]
G. Caetano-Anollés.
Amplifying DNA with arbotrary oligonucleotide primers.
PCR Methods Appl, 3 (1993), pp. 85-94
[6.]
P.H. Savelkoul, H.J. Aarts, J. De Haas, L. Dijkshoorn, B. Duim, M. Otsen.
Amplified-fragment length polymorphism analysis: the state of an art.
J Clin Microbiol, 37 (1999), pp. 3083-3091
[7.]
M.C. Enright, B.G. Spratt.
Multilocus sequence typing.
Trends Microbiol, 7 (1999), pp. 482-487
[8.]
B. Swaminathan, T.J. Barrett, S.B. Hunter, R.V. Tauxe, Force CDC PulseNet Task.
PulseNet: the molecular subtyping network for foodborne bacterial disease surveillance, United States.
Emerg Infect Dis, 7 (2001), pp. 382-389
[9.]
V.P. Canhos, G.P. Manfio, L.D. Blaine.
Software tools and databases for bacterial systematics and their dissemination via global networks.
Antonie Van Leeuwenhoek, 64 (1994), pp. 205-229
[10.]
R.K. Selander, D.A. Caugant, H. Ochman, J.M. Musser, M.N. Gilmour, T.S. Whittam.
Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics.
Appl Environ Microbiol, 51 (1986), pp. 873-884
[11.]
M.C. Maiden, J.A. Bygraves, E. Feil, G. Morelli, J.E. Russell, R. Urwin.
Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms.
Proc Natl Acad Sci USA, 95 (1998), pp. 3140-3145
[12.]
N.H. Smith, E.C. Holmes, G.M. Donovan, G.A. Carpenter, B.G. Spratt.
Networks and groups within the genus Neisseria: analysis of argF, recA, rho, and 16S rRNA sequences from human Neisseria species.
Mol Biol Evol, 16 (1999), pp. 773-783
[13.]
E. Feil, J. Zhou, J. Maynard Smith, B.G. Spratt.
A comparison of the nucleotide sequences of the adk and recA genes of pathogenic and commensal Neisseria species: evidence for extensive interspecies recombination within adk.
J Mol Evol, 43 (1996), pp. 631-640
[14.]
E.F. Boyd, K. Nelson, F.S. Wang, T.S. Whittam, R.K. Selander.
Molecular genetic basis of allelic polymorphism in malate dehydrogenase (mdh) in natural populations of Escherichia coli and Salmonella enterica.
Proc Natl Acad Sci USA, 91 (1994), pp. 1280-1284
[15.]
M. Enright, B.G. Spratt.
A multilocus sequence typing scheme for Streptococcus pneumoniae: identification of clones associated with serious invasive disease.
Microbiology, 144 (1998), pp. 3049-3060
[16.]
M.C. Enright, N.P. Day, C.E. Davies, S.J. Peacock, B.G. Spratt.
Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus.
J Clin Microbiol, 38 (2000), pp. 1008-1015
[17.]
K.E. Dingle, F.M. Colles, D.R.A. Wareing, R. Ure, A.J. Fox, F.J. Bolton.
Multilocus Sequence Typing System for Campylobacter jejuni.
J Clin Microbiol, 39 (2001), pp. 14-23
[18.]
W.L. Homan, D. Tribe, S. Poznanski, M. Li, G. Hogg, E. Spalburg.
Multilocus sequence typing scheme for Enterococcus faecium.
J Clin Microbiol, 40 (2002), pp. 1963-1971
[19.]
C. Salcedo, L. Arreaza, B. Alcala, L. De la Fuente, J.A. Vázquez.
Development of a multilocus sequence typing method for analysis of Listeria monocytogenes clones.
J Clin Microbiol, 41 (2003), pp. 757-762
[20.]
M.S. Chan, M.C. Maiden, B.G. Spratt.
Database-driven multi locus sequence typing (MLST) of bacterial pathogens.
Bioinformatics, 17 (2001), pp. 1077-1083
[21.]
M.C. Enright, K. Knox, D. Griffiths, D.W. Crook, B.G. Spratt.
Molecular typing of bacteria directly from cerebrospinal fluid.
Eur J Clin Microbiol Infect Dis, 19 (2000), pp. 627-630
[22.]
M.A. Diggle, C.M. Bell, S.C. Clarke.
Nucleotide sequence-based typing of meningococci directly from clinical samples.
J Med Microbiol, 52 (2003), pp. 505-508
[23.]
D.A. Caugant, K. Bovre, P. Gaustad, K. Bryn, E. Holten, E.A. Hoiby.
Multilocus genotypes determined by enzyme electrophoresis of Neisseria meningitidis isolated from patients with systemic disease and from healthy carriers.
J Gen Microbiol, 132 (1986), pp. 641-652
[24.]
D.A. Caugant, L.F. Mocca, C.E. Frasch, L.O. Froholm, W.D. Zollinger, R.K. Selander.
Genetic structure of Neisseria meningitidis populations in relation to serogroup, serotype, and outer membrane protein pattern.
J Bacteriol, 169 (1987), pp. 2781-2792
[25.]
J.M. Smith, N.H. Smith, M. O’Rourke, B.G. Spratt.
How clonal are bacteria?.
Proc Natl Acad Sci USA, 90 (1993), pp. 4384-4388
[26.]
M. Van Looveren, D.A. Caugant, S. Chapelle, F. Carion, H. Goossens.
Interpreting the rising incidence of meningococcal disease in Belgium: the contribution of molecular typing.
J Med Microbiol, 50 (2001), pp. 986-990
[27.]
L.W. Mayer, M.W. Reeves, N. Al-Hamdan, C.T. Sacchi, M.K. Taha, G.W. Ajello.
Outbreak of W135 meningococcal disease in 2000: not emergence of a new W135 strain but clonal expansion within the electophoretic type-37 complex.
J Infect Dis, 185 (2002), pp. 1596-1605
[28.]
J.A. Bygraves, R. Urwin, A.J. Fox, S.J. Gray, J.E. Russell, I.M. Feavers.
Population genetic and evolutionary approaches to analysis of Neisseria meningitidis isolates belonging to the ET-5 complex.
J Bacteriol, 181 (1999), pp. 5551-5556
[29.]
K.A. Jolley, J. Kalmusova, E.J. Feil, S. Gupta, M. Musilek, P. Kriz.
Carried meningococci in the Czech Republic: a diverse recombining population.
J Clin Microbiol, 38 (2000), pp. 4492-4498
[30.]
B. Alcalá, C. Salcedo, L. Arreaza, S. Berrón, L. De la Fuente, J.A. Vázquez.
The epidemic wave of meningococcal disease in Spain in 1996-1997: probably a consequence of strain displacement.
J Med Microbiol, 51 (2002), pp. 1102-1106
[31.]
G. Tzanakaki, R. Urwin, M. Musilek, P. Kriz, J. Kremastinou, A. Pangalis.
Phenotypic and genotypic approaches to characterization of isolates of Neisseria meningitidis from patients and their close family contacts.
J Clin Microbiol, 39 (2001), pp. 1235-1240
[32.]
E.J. Feil, J.M. Smith, M.C. Enright, B.G. Spratt.
Estimating recombinational parameters in Streptococcus pneumoniae from multilocus sequence typing data.
Genetics, 154 (2000), pp. 1439-1450
[33.]
C. Feldman, K.p. Klugman.
Pneumococcal infections.
Curr Opin Infect Dis, 10 (1997), pp. 109-115
[34.]
L. Arreaza, B. Alcalá, C. Salcedo, L. De la Fuente, J.A. Vázquez.
Dynamics of the penA gene in serogroup C meningococcal strains.
J Infect Dis, 187 (2003), pp. 1010-1014
[35.]
L. McGee, L. McDougal, J. Zhou, B.G. Spratt, F.C. Tenover, R. George.
Nomenclature of major antimicrobial-resistant clones of Streptococcus pneumoniae defined by the pneumococcal molecular epidemiology network.
J Clin Microbiol, 39 (2001), pp. 2565-2571
[36.]
K.P. Klugman.
The successful clone: the vector of dissemination of resistance in Streptococcus pneumoniae.
J Antimicrob Chemother, 50 (2002), pp. 1-6
[37.]
L. McGee, C.E. Goldsmith, K.p. Klugman.
Fluoroquinolone resistance among clinical isolates of Streptococcus pneumoniae belonging to international multiresistant clones.
J Antimicrob Chemother, 49 (2002), pp. 173-176
[38.]
J.A. Vázquez.
El desarrollo de vacunas frente a meningococo: un largo, tortuoso y aún inacabado camino.
Enferm Infecc Microbiol Clin, 20 (2002), pp. 313-315
[39.]
S. Black, H. Shinefield, B. Fireman, E. Lewis, P. Ray, J.R. Hansen.
Efficacy, safety and immunogenicity of heptavalent pneumococcal conjugate vaccine in children.
Northern California Kaiser Permanente Vaccine Study Center Group.Pediatr Infect Dis J, 19 (2000), pp. 187-195
[40.]
M.C. Maiden, B.G. Spratt.
Meningococcal conjugate vaccines: new opportunities and new challenges.
Lancet, 354 (1999), pp. 615-616
Copyright © 2004. Elsevier España, S.L.. Todos los derechos reservados
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos