metricas
covid
Buscar en
Enfermedades Infecciosas y Microbiología Clínica
Toda la web
Inicio Enfermedades Infecciosas y Microbiología Clínica Contribución del laboratorio de microbiología en la vigilancia y el control de...
Información de la revista
Vol. 29. Núm. S3.
Programa Externo de Control de Calidad SEIMC. Año 2009
Páginas 40-46 (marzo 2011)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 29. Núm. S3.
Programa Externo de Control de Calidad SEIMC. Año 2009
Páginas 40-46 (marzo 2011)
Acceso a texto completo
Contribución del laboratorio de microbiología en la vigilancia y el control de brotes nosocomiales producidos por bacilos gramnegativos no fermentadores
The microbiology laboratory’s contribution to the surveillance and control of outbreaks caused by nonfermentative Gram-negative bacilli
Visitas
4333
Felipe Fernández-Cuencaa, Luis E. López-Cortésa, Jesús Rodríguez-Bañoa,b,
Autor para correspondencia
jesusrb@us.es

Autor para correspondencia.
a Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Sevilla, España
b Departamento de Medicina, Universidad de Sevilla, Sevilla, España
Este artículo ha recibido
Información del artículo
Resumen

Los bacilos gramnegativos no fermentadores (BGNNF) de mayor relevancia clínica en los hospitales son Pseudomonas aeruginosa, Acinetobacter baumannii y Stenotrophomonas maltophilia, entre otros. Con frecuencia se trata de microorganismos capaces de causar diversos tipos de infección en pacientes hospitalizados y, sobre todo los dos primeros, de originar brotes clonales extensos y situaciones complejas en las que cepas esporádicas coexisten con cepas epidémicas. Algunas características comunes a todos ellos son su resistencia intrínseca a múltiples antibióticos, su capacidad para desarrollar más resistencias y la posibilidad de existencia de reservorios ambientales. El laboratorio de microbiología tiene un papel fundamental en la detección de posibles brotes causados por estos microorganismos, en la identificación de cepas con mecanismos de resistencia determinados y en la caracterización de la epidemiología local, mediante la detección de portadores y/o de reservorios ambientales, cuando proceda, la adecuada identificación de los aislados, el estudio fenotípico y/o la caracterización genotípica del mecanismo de resistencia, si procede, y, finalmente, mediante la utilización de las distintas técnicas de tipificación molecular de los aislados de BGNNF que se revisan en este artículo. Estas actividades se deben encuadrar dentro de los programas de vigilancia y control de patógenos resistentes en los hospitales y de los grupos multidisciplinares de control de la infección.

Palabras clave:
Pseudomonas aeruginosa
Acinetobacter baumannii
Stenotrophomonas maltophilia
Bacilos gramnegativos no fermentadores
Infección nosocomial
Epidemiología molecular
Brotes nosocomiales
Abstract

Pseudomonas aeruginosa, Acinetobacter baumannii and Stenotrophomonas maltophilia are, among others, the most important nonfermentative Gram-negative bacilli within hospitals. These organisms are able to cause different types of nosocomial infections in predisposed patients, and P. aeruginosa and A. baumannii in particular may cause extensive clonal outbreaks and complex situations in which sporadic isolates may coexist with some epidemic strains. Some common features are their intrinsic resistance to many antimicrobials, their capacity to further develop antimicrobial resistance, and the possibility of environmental reservoirs as sources of these microorganisms in healthcare centers. The microbiology laboratory plays a key role in the detection of potential outbreaks, in the identification of new resistance mechanisms and in the characterization of local epidemiology, by detecting colonized patients and/or environmental reservoirs if needed, appropriately identifying the isolates, phenotypically or genotypically characterizing their mechanisms of resistance, if appropriate, and finally by using different molecular techniques for clonal typing, which are reviewed in this article. Such activities must be performed in the context of the surveillance and control programs of specific institutions and as part of the daily work of multidisciplinary infection control teams.

Keywords:
Pseudomonas aeruginosa
Acinetobacter baumannii
Stenotrophomonas maltophilia
Nonfermenter bacilli Gram negative
Nosocomial infection
Molecular epidemiology
Nosocomial outbreaks
El Texto completo está disponible en PDF
Bibliografía
[1.]
M.E. Falagas, P. Kopterides.
Risk factors for the isolation of multi drug resistant Acinetobacter baumannii and Pseudomonas aeruginosa: a systematic review of the literature.
J Hosp Infect, 64 (2006), pp. 7-15
[2.]
J.I. Paez, S.F. Costa.
Risk factors associated with mortality of infections caused by Stenotrophomonas maltophilia: a systematic review.
J Hosp Infect, 70 (2008), pp. 101-108
[3.]
F. De Baets, P. Schelstraete, S. Van Daele, F. Haerynck, M. Vaneechoutte.
Achromobacter xylosoxidans in cystic fibrosis: prevalence and clinical relevance.
J Cyst Fibros, 6 (2007), pp. 75-78
[4.]
J.L. Veesenmeyer, A.R. Hauser, T. Lisboa, J. Rello.
Pseudomonas aeruginosa virulence and therapy: evolving translational strategies.
Crit Care Med, 37 (2009), pp. 1777-1786
[5.]
A.Y. Peleg, H. Seifert, D.L. Paterson.
Acinetobacter baumannii: emergence of a successful pathogen.
Clin Microbiol Rev, 21 (2008), pp. 538-582
[6.]
M.D. Del Toro, J. Rodríguez-Baño, M. Herrero, A. Rivero, M.A. García-Ordóñez, J. Corzo, et al.
Clinical epidemiology of Stenotrophomonas maltophilia colonization and infection: a multicenter study.
Medicine (Baltimore), 81 (2002), pp. 228-239
[7.]
J.E. McGowan Jr.
Resistance in nonfermenting gram-negative bacteria: multidrug resistance to the maximum.
Am J Infect Control, 34 (2006), pp. S29-S37
[8.]
A.A. El Solh, A. Alhajhusain.
Update on the treatment of Pseudomonas aeruginosa pneumonia.
J Antimicrob Chemother, 64 (2009), pp. 229-238
[9.]
D.E. Karageorgopoulos, M.E. Falagas.
Current control and treatment of multidrug resistant Acinetobacter baumannii infections.
Lancet Infect Dis, 8 (2008), pp. 751-762
[10.]
A.I. Hidron, J.R. Edwards, J. Patel, T.C. Horan, D.M. Sievert, D.A. Pollock, et al.
Anitmicrobial resistant pathogens associated with healthcare associated infections: annual summary of data reported to the Nacional Healthcare Safety Network at the Centres for Disease Control and Prevention, 2006–2007.
Infect Control Hosp Epidemiol, 29 (2008), pp. 996-1011
[11.]
Sociedad Española de Medicina Intensiva crítica y Unidades Coronarias (SEMICYUC). Grupo de Trabajo de Enfermedades Infecciosas. Estudio nacional de vigilancia de infección nosocomial en servicios de Medicina Intensiva [consultado, 25-6-2010]. Disponible en: http://hws.vhebron.net/envin-helics/Helo/ENVIN-UCI%20Informe%202009.pdf.
[12.]
Y. Carmeli, M. Akova, G. Cornaglia, G.L. Daikos, J. Garau, S. Harbarth, et al.
Controlling the spread of carbapenemse producing Gram negatives: therapeutic approach and infection control.
Clin Microbiol Infect, 16 (2010), pp. 102-111
[13.]
A.M. Queenan, K. Bush.
Carbapenemases: the versatile beta-lactamases.
Clin Microbiol Rev, 20 (2007), pp. 440-458
[14.]
J. Rodríguez-Baño, J.M. Cisneros, F. Fernández-Cuenca, A. Ribera, J. Vila, A. Pascual, et al.
Clinical features and epidemiology of Acinetobacter baumannii colonization and infection in Spanish hospitals.
Infect Control Hosp Epidemiol, 25 (2004), pp. 819-824
[15.]
J. Rodríguez-Baño, L. García, E. Ramírez, L. Martínez-Martínez, M.A. Muniain, F. Fernández-Cuenca, et al.
Long term control of hospital wide endemic multidrug resistant (MDR) Acinetobacter baumannii through a comprehensive “bundle” approach.
Am J Infect Control, 37 (2009), pp. 715-722
[16.]
A. Safdar, K.V. Rolston.
Stenotrophomonas maltophilia: changing spectrum of a serious bacterial pathogen in patients with cancer.
Clin Infect Dis, 45 (2007), pp. 1602-1609
[17.]
R. Cantón.
Role of the microbiology laboratory in infectious disease surveillance, alert and response.
Clin Microbiol Infect, 11 (2005), pp. 3-8
[18.]
M.J. Struelens, O. Denis, H. Rodríguez-Villalobos.
Microbiology of nosocomial infections: progress and challenges.
Microbes Infect, 6 (2004), pp. 1043-1048
[19.]
P.D. Lister, D.J. Wolter, N.D. Hanson.
Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms.
Clin Microbiol Rev, 22 (2009), pp. 582-610
[20.]
R.A. Bonomo, D. Szabo.
Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa.
Clin Infect Dis, 43 (2006), pp. S49-S56
[21.]
J. Vila, F. Marco.
Interpretative reading of the non-fermenting gram-negative bacilli antibiogram.
Enferm Infecc Microbiol Clin, 20 (2002), pp. 304-310
[22.]
A. Singh, R.V. Goering, S. Simjee, S.L. Foley, M.J. Zervos.
Application of molecular techniques to the study of hospital infection.
Clin Microbiol Rev, 19 (2006), pp. 512-530
[23.]
F. Fernández-Cuenca.
Applications of PCR techniques for molecular epidemiology of infectious diseases.
Enferm Infecc Microbiol Clin, 22 (2004), pp. 355-360
[24.]
F.C. Tenover, R.D. Arbeit, R.V. Goering.
How to select and interpret molecular strain typing methods for epidemiological studies of bacterial infections: a review for healthcare epidemiologists. Molecular Typing Working Group of the Society for Healthcare Epidemiology of America.
Infect Control Hosp Epidemiol, 18 (1997), pp. 426-439
[25.]
Y. Carmeli, K. Eichelberger, D. Soja, J. Dakos, L. Venkataraman, P. DeGirolami, et al.
Failure of quality control measures to prevent reporting of false resistance to imipenem, resulting in a pseudo-outbreak of imipenem resistant Pseudomonas aeruginosa.
J Clin Microbiol, 36 (1998), pp. 595-597
[26.]
C. Franklin, L. Liolios, A.Y. Peleg.
Phenotypic detection of carbapenem susceptible metallo-β-lactamase-producing Gram-negative bacilli in the clinical laboratory.
J Clin Microbiol, 44 (2006), pp. 3139-3144
[27.]
U. Kayabas, M. Bayraktar, B. Otlu, M. Ugras, Y. Ersoy, Y. Bayindir, et al.
An outbreak of Pseudomonas aeruginosa because of inadequate disinfection procedures in a urology unit: a pulsed field gel electrophoresis-based epidemiologic study.
Am J Infect Control, 36 (2008), pp. 33-38
[28.]
D.S. Blanc, P. Francioli, G. Zanetti.
Molecular epidemiology of Pseudomonas aeruginosa in the intensive care units - A review.
Open Microbiol J, 1 (2007), pp. 8-11
[29.]
E.J. Anaissie, S.R. Penzak, M.C. Dignani.
The hospital water supply as a source of nosocomial infections: a plea for action.
Arch Intern Med, 162 (2002), pp. 1483-1492
[30.]
I. Mateos, R. Valencia, M.J. Torres, A. Cantos, M. Conde, J. Aznar.
Nosocomial outbreak of Pseudomonas aeruginosa endophthalmitis.
Infect Control Hosp Epidemiol, 27 (2006), pp. 1249-1251
[31.]
A. Srinivasan, L.L. Wolfenden, X. Song, K. Mackie, T.L. Hartsell, H.D. Jones, et al.
An outbreak of Pseudomonas aeruginosa infections associated with flexible bronchoscopes.
N Engl J Med, 348 (2003), pp. 221-227
[32.]
C. Aumeran, C. Paillard, F. Robin, J. Kanold, O. Baud, R. Bonnet, et al.
Pseudomonas aeruginosa and Pseudomonas putida outbreak associated with contaminated water outlets in an oncohaematology paediatric unit.
J Hosp Infect, 65 (2007), pp. 47-53
[33.]
J.A. Adachi, C. Perego, L. Graviss, T. Dvorak, R. Hachem, R.F. Chemaly, et al.
The role of interventional molecular epidemiology in controlling clonal clusters of multidrug resistant Pseudomonas aeruginosa in critically ill cancer patients.
Am J Infect Control, 37 (2009), pp. 442-446
[34.]
L. Dijkshoorn, B. Van Harsselaar, I. Tjernberg, P.J. Bouvet, M. Vaneechoutte.
Evaluation of amplified ribosomal DNA restriction analysis for identification of Acinetobacter genomic species.
Syst Appl Microbiol, 21 (1998), pp. 33-39
[35.]
H.C. Chang, Y.F. Wei, L. Dijkshoorn, M. Vaneechoutte, C.T. Tang, T.C. Chang.
Species-level identification of isolates of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex by sequence analysis of the 16S–23S rRNA gene spacer region.
J Clin Microbiol, 43 (2005), pp. 1632-1639
[36.]
L. Poirel, P. Nordmann.
Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology.
Clin Microbiol Infect, 12 (2006), pp. 826-836
[37.]
L. Poirel, T. Naas, P. Nordmann.
Diversity, epidemiology, and genetics of class D beta-lactamases.
Antimicrob Agents Chemother, 54 (2010), pp. 24-38
[38.]
J. Vila, S. Martí, J. Sánchez-Céspedes.
Porins, efflux pumps and multidrug resistance in Acinetobacter baumannii.
J Antimicrob Chemother, 59 (2007), pp. 1210-1215
[39.]
J.M. Swenson, G.E. Killgore, F.C. Tenover.
Antimicrobial susceptibility testing of Acinetobacter spp. by NCCLS broth microdilution and disk diffusion methods.
J Clin Microbiol, 42 (2004), pp. 5102-5108
[40.]
A. Loli, L.S. Tzouvelekis, D. Gianneli, E. Tzelepi, V. Miriagou.
Outbreak of Acinetobacter baumannii with chromosomally encoded VIM-1 undetectable by imipenem-EDTA synergy tests.
Antimicrob Agents Chemother, 52 (2008), pp. 1894-1896
[41.]
H. Segal, B.G. Elisha.
Use of Etest MBL strips for the detection of carbapenemses in Acinetobacter baumannii.
J Antimicrob Chemother, 56 (2005), pp. 598
[42.]
F. Fernández-Cuenca, P. Egea, L. López-Cerero, P. Díaz-De Alba, J. Vila, A. Pascual.
Comparison of 3 methods for determining sensitivity to imipenem and meropenem in Acinetobacter baumannii with a carbapenem heteroresistant phenotype.
Enferm Infecc Microbiol Clin, 26 (2008), pp. 485-488
[43.]
H. Seifert, L. Dolzani, R. Bressan, T. Van der Reijden, B. Van Strijen, D. Stefanik, et al.
Standardization and interlaboratory reproducibility assessment of pulsed field gel electrophoresis-generated fingerprints of Acinetobacter baumannii.
J Clin Microbiol, 43 (2005), pp. 4328-4335
[44.]
G. Bou, G. Cerveró, M.A. Domínguez, C. Quereda, J. Martínez-Beltrán.
PCR based DNA fingerprinting (REP-PCR, AP-PCR) and pulsed-field gel electrophoresis characterization of a nosocomial outbreak caused by imipenem and meropenem resistant Acinetobacter baumannii.
Clin Microbiol Infect, 6 (2000), pp. 635-643
[45.]
E. Carretto, D. Barbarini, C. Farina, A. Grosini, P. Nicoletti, E. Manso, et al.
Use of the DiversiLab semiautomated repetitive sequence based polymerase chain reaction for epidemiologic analysis on Acinetobacter baumannii isolates in different Italian hospitals.
Diagn Microbiol Infect Dis, 60 (2008), pp. 1-7
[46.]
P.G. Higgins, C. Dammhayn, M. Hackel, H. Seifert.
Global spread of carbapenem resistant Acinetobacter baumannii.
J Antimicrob Chemother, 65 (2010), pp. 233-238
[47.]
P.J. Van den Broek, T.J. Van der Reijden, E. Van Strijen, A.V. Helmig-Schurter, A.T. Bernards, L. Dijkshoorn.
Endemic and epidemic Acinetobacter species in a university hospital: an 8 year survey.
J Clin Microbiol, 47 (2009), pp. 3593-3599
[48.]
J. Rodríguez-Baño, L. García, E. Ramírez, L. Martínez-Martínez, M.A. Muniain, F. Fernández-Cuenca, et al.
Long term control of hospital wide, endemic multidrug resistant Acinetobacter baumannii through a comprehensive “bundle” approach.
Am J Infect Control, 37 (2009), pp. 715-722
[49.]
J.K. Valenzuela, L. Thomas, S.R. Partridge, T. Van der Reijden, L. Dijkshoorn, J. Iredell.
Horizontal gene transfer in a polyclonal outbreak of carbapenem resistant Acinetobacter baumannii.
J Clin Microbiol, 45 (2007), pp. 453-460
[50.]
M. Denton, K.G. Kerr.
Microbiological and clinical aspects of infection associated with Stenotrophomonas maltophilia.
Clin Microbiol Rev, 11 (1998), pp. 57-80
[51.]
X.Z. Li, L. Zhang, K. Poole.
SmeC, an outer membrane multidrug efflux pump of Stenotrophomonas maltophilia.
Antimicrob Agents Chemother, 46 (2002), pp. 333-343
[52.]
T.S. Krueger, E.A. Clark, D.E. Nix.
In vitro susceptibility of Stenotrophomonas maltophilia to various antimicrobial combinations.
Diagn Microbiol Infect Dis, 41 (2001), pp. 71-78
[53.]
S. Valdezate, A. Vindel, E. Loza, F. Baquera, R. Cantón.
Antimicrobial susceptibilities of unique Stenotrophomonas maltophilia clinical strains.
Antimicrob Agents Chemother, 45 (2001), pp. 1581-1584
[54.]
J.D. Yao, J.M. Conly, M. Krajden.
Molecular typing of Stenotrophomonas (Xanthomonas) maltophilia by DNA macrorestriction analysis and random amplified polymorphic DNA analysis.
J Clin Microbiol, 33 (1995), pp. 2195-2198
[55.]
N. Marty.
Epidemiological typing of Stenotrophomonas maltophilia.
J Hosp Infect, 36 (1997), pp. 261-266
[56.]
J.A. Labarca, A.L. Leber, V.L. Kern, M.C. Territo, L.E. Brankovic, D.A. Bruckner, et al.
Outbreak of Stenotrophomonas maltophilia bacteremia in allogenic bone marrow transplant patients: role of severe neutropenia and mucositis.
Clin Infect Dis, 30 (2000), pp. 195-197
[57.]
M.B. Souza Dias, A.B. Habert, V. Borrasca, V. Stempliuk, A. Ciolli, M.R. Araujo, et al.
Salvage of long term central venous catheters during an outbreak of Pseudomonas putida and Stenotrophomonas maltophilia infections associated with contaminated heparin catheter lock solution.
Infect Control Hosp Epidemiol, 29 (2008), pp. 125-130
[58.]
M. Almuzara, M. Matteo, R. Cittadini, E. Bertona, R. Armitano, M. Catalano, et al.
Outbreak of Alcaligenes faecalis pseudobacteraemia in neonatology and paediatric units.
J Hosp Infect, 74 (2010), pp. 397-399
[59.]
Y.H. Lin, P.Y. Liu, Z.Y. Shi, Y.J. Lau, B.S. Hu.
Comparison of polymerase chain reaction and pulsed field gel electrophoresis for the epidemiological typing of Alcaligenes xylosoxidans subsp. xylosoxidans in a burn unit.
Diagn Microbiol Infect Dis, 28 (1997), pp. 173-178
[60.]
J. Molina-Cabrillana, C. Santana-Reyes, A. González-García, A. Bordes-Benítez, I. Horcajada.
Outbreak of Achromobacter xylosoxidans pseudobacteremia in a neonatal care unit related to contaminated chlorhexidine solution.
Eur J Clin Microbiol Infect Dis, 26 (2007), pp. 435-437
[61.]
D. Tena, R. Carranza, J.R. Barberá, S. Valdezate, J.M. Garrancho, M. Arranz, et al.
Outbreak of long term intravascular catheter related bacteremia due to Achromobacter xylosoxidans subspecies xylosoxidans in a hemodialysis unit.
Eur J Clin Microbiol Infect Dis, 24 (2005), pp. 727-732
[62.]
T. Coenye, P. Vandamme, J.R. Govan, J.J. LiPuma.
Taxonomy and identification of the Burkholderia cepacia complex.
J Clin Microbiol, 39 (2001), pp. 3427-3436
Copyright © 2011. Elsevier España S.L.. Todos los derechos reservados
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos