metricas
covid
Buscar en
Enfermedades Infecciosas y Microbiología Clínica
Toda la web
Inicio Enfermedades Infecciosas y Microbiología Clínica Papel de los grampositivos en las infecciones osteoarticulares
Información de la revista
Vol. 26. Núm. S2.
Infecciones por grampositivos: perspectivas terapéuticas actuales
Páginas 31-43 (enero 2008)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 26. Núm. S2.
Infecciones por grampositivos: perspectivas terapéuticas actuales
Páginas 31-43 (enero 2008)
Infecciones por grampositivos: perspectivas terapéuticas actuales
Acceso a texto completo
Papel de los grampositivos en las infecciones osteoarticulares
Role of Gram-positive microorganisms in bone and joint infections
Visitas
2930
Javier Cobo
Autor para correspondencia
jcobo.hrc@salud.madrid.org

Correspondencia: Dr. J. Cobo. Servicio de Enfermedades Infecciosas. Hospital Ramón y Cajal. Ctra. Colmenar Viejo, km 9,100. 28049 Madrid. España.
Servicio de Enfermedades Infecciosas. Hospital Ramón y Cajal. Madrid. España
Este artículo ha recibido
Información del artículo

El amplio campo de las infecciones osteoarticulares representa un enorme reto para los microbiólogos y los clínicos que se enfrentan a ellas. A pesar de décadas de investigación y experiencia sobre estas infecciones, permanecen sin resolver cuestiones básicas, especialmente en el terreno del tratamiento. A diferencia de la mayor parte de las infecciones bacterianas, que pueden tratarse con protocolos relativamente sencillos, las infecciones osteoarticulares no son fáciles de tratar y su abordaje requiere una planificación adecuada, generalmente multidisciplinar, en la que el infectólogo y el microbiólogo deben conocer la patogenia y la clasificación de las diferentes entidades clínicas para integrar de manera adecuada sus conocimientos sobre microbiología y antibioticoterapia. A la difícil sistematización y estudio de la enfermedad osteoarticular séptica hay que añadir las dificultades que, en el terreno del tratamiento, comporta el incremento de las resistencias en las bacterias grampositivas, auténticas protagonistas de estas infecciones. Por ello, revisaremos el papel de nuevos antimicrobianos con actividad frente a bacterias grampositivas multirresistentes —con especial énfasis en linezolid y daptomicina—, así como el de viejos antimicrobianos todavía útiles en el tratamiento de estas complejas enfermedades.

Palabras clave:
Osteomielitis
Artritis séptica
Prótesis articulares
Linezolid
Daptomicina
Estafilococos resistentes

The wide variety of bone and joint infections represents an enormous challenge for microbiologists and clinicians dealing with these entities. Despite decades of research and experience of these infections, basic questions remain unresolved, especially in the field of therapeutics. Unlike most bacterial infections, which can be managed with relatively simple protocols, bone and joint infections are not easy to treat and their approach requires adequate planning – generally multidisciplinary – in which infectious disease specialists and microbiologists should determine the pathogenesis and classification of the distinct clinical entities to integrate their knowledge of microbiology and antibiotic therapy. In addition to the difficulty of classifying and studying septic bone and joint disease, there are also the difficulties posed by the increase in Gram-positive bacterial resistance – the agents of these infections – in the field of therapeutics. Therefore, we review the role of new antimicrobial agents with activity against multiresistant Gram-positive bacteria, with special emphasis on linezolid and daptomycin, as well as the old antimicrobial agents that are still useful in the treatment of these complex diseases.

Key words:
Osteomyelitis
Septic arthritis
Joint prostheses
Linezolid
Daptomycin
Resistant staphylococci
El Texto completo está disponible en PDF
Bibliografía
[1.]
B.H. Ziran, N. Rao, R.A. Hall.
A dedicated team approach enhances outcomes of osteomyelitis treatment.
[2.]
D. Stengel, K. Bauwens, J. Sehouli, A. Ekkernkamp, F. Porzsolt.
Systematic review and meta-analysis of antibiotic therapy for bone and joint infections.
Lancet Infect Dis, 1 (2001), pp. 175-188
[3.]
J.R. Lentino.
Prosthetic joint infections: bane of orthopedists, challenge for infectious disease specialists.
Clin Infect Dis, 36 (2003), pp. 1157-1161
[4.]
J.S. Davis.
Management of bone and joint infections due to Staphylococcus aureus.
Intern Med J, 35 (2005), pp. S79-S96
[5.]
V.C. Weston, A.C. Jones, N. Bradbury, F. Fawthrop, M. Doherty.
Clinical features and outcome of septic arthritis in a single UK Health District. 1982-1991.
Ann Rheum Dis, 58 (1999), pp. 214-219
[6.]
H. Caksen, M.K. Oztürk, K. Uzüm, S. Yüksel, H. Ustünbafl, H. Per.
Septic arthritis in chilhood.
Pediatr Int, 42 (2000), pp. 434-440
[7.]
J. Ciampolini, K.G. Harding.
Pathophysiology of chronic bacterial osteomielitis. Why do antibiotics fail so often?.
Postgrad Med J, 76 (2000), pp. 479-483
[8.]
D.P. Lew, F.A. Waldvogel.
Osteomyelitis.
N Engl J Med, 336 (1997), pp. 999-1007
[9.]
C. Von Eiff, G. Peters, K. Becker.
The small colony variant (SCV) concept: the role of staphylococcal SCVs inpersistent infections.
[10.]
J.K. Ellington, M. Harris, M.C. Hudson, S. Vishin, L.X. Webb, R. Sherertz.
Intracellular Staphylococcus aureus and antibiotic resistance: implications for treatment of staphylococcal osteomyelitis.
J Orthop Res, 24 (2006), pp. 87-93
[11.]
P. Sendi, M. Rohrbach, P. Graber, R. Frei, P.E. Ochsner, W. Zimmerli.
Staphylococcus aureus small colony variants in prosthetic joint infection.
Clin Infect Dis, 43 (2006), pp. 961-967
[12.]
L.B. Dahl, A.L. Hyland, H. Dramsdahl, P.I. Kaaresen.
Acute osteomyelitis in children: a population-based retrospective study 1965 to 1994.
Scand J Infect Dis, 30 (1998), pp. 573-577
[13.]
M.C. McHenry, K.A. Easley, G.A. Locker.
Vertebral osteomyelitis: long-term outcome for 253 patients from 7 Cleveland-area hospitals.
Clin Infect Dis, 34 (2002), pp. 1342-1350
[14.]
P.S. Stewart, J.W. Costerton.
Antibiotic resistance of bacteria in biofilms.
Lancet, 358 (2001), pp. 135-138
[15.]
P.T. Naylor, Q.N. Myrvic, A. Gristina.
Antibiotic resistance of biomaterial-adherent coagulase-egative and coagulase-positive staphylococci.
Clin Orthop, 261 (1990), pp. 126-133
[16.]
D.T. Tsukayama, R. Estrada, R.B. Gustilo.
Infection after total hip arthroplasty. A study of the treatment of one hundred and six infections.
J Bone Joint Surg Am, 78 (1996), pp. 512-523
[17.]
A. Trampuz, J.M. Steckelberg, D.R. Osmon, F.R. Cockerill, A.D. Hanssen, R. Paten.
Advances in the laboratory diagnosis joint infection.
Rev Med Microbiol, 14 (2003), pp. 1-14
[18.]
A. Nilsdotter-Augustinsson, A. Koskela, L. Ohman, B. Söderquist.
Characterization of coagulase-negative staphylococci isolated from patients with-infected hip prostheses: use of phenotypic and genotypic analyses, including tests for the presence of the ica operon.
Eur J Clin Microbiol Infect Dis, 26 (2007), pp. 255-265
[19.]
Marín M, Murillo O, Calatayud L, Ochiuzzi ME, Domínguez MA, Verdaguer R, et al. Problemática del diagnóstico microbiológico de la infección tardía de las prótesis articulares por Staphylococcus coagulasa negativo (SCN). XI Congreso SEIMC. Bilbao, mayo 2004.
[20.]
C.L. Nelson, A.C. McLaren, S.G. McLaren, J.W. Johnson, M.S. Smeltzer.
Is aseptic loosening truly aseptic?.
Clin Orthop Relat Res, 437 (2005), pp. 25-30
[21.]
C.E. Marculescu, E.F. Berbari, F.R. Cockerill, D.R. Osmon.
Unusual aerobic and anaerobic bacteria associated with prosthetic joint infections.
Clin Orthop Relat Res, 451 (2006), pp. 55-63
[22.]
I.M. Van der Heijden, B. Wilbrink, A.E. Vije, L.M. Schouls, F.C. Breedveld, P.P. Tak.
Detection of bacterial DNA in serial synovial samples obtained during antibiotic treatment from patients with septic arthritis.
Arthritis Rheum, 42 (1999), pp. 2198-2203
[23.]
F. Fenollar, V. Roux, A. Stei, M. Drancourt, D. Raoulr.
Anamysis of 525 samples to determine the usefulness of PCR amplification and sequencing of the 16S rRNA gene for diagnosis of bone and joint infections.
J Clin Mcrobiol, 44 (2006), pp. 1018-1028
[24.]
H.C. Gerard, Z. Wang, G.F. Wang, H. El-Gabalawy, R. Goldbach-Mansky, Y. Li, et al.
Chromosomal DNA from a variety of bacterial species is present in synovial tissue from patients with various forms of arthritis.
[25.]
A.F. Zuluaga, W. Galvis, F. Jaimes, O. Vesga.
Lack of microbiological concordance between bone and non-bone specimens in chronic osteomyelitis: an observational study.
BMC Infect Dis, 162 (2002), pp. 8
[26.]
E. Senneville, H. Melliez, E. Beltrand, L. Legout, M. Valette, M. Cazaubiel, et al.
Culture of percutaneous bone biopsy specimens for diagnosis of diabetic foot osteomyelitis: concordance with ulcer swab cultures.
Clin Infect Dis, 42 (2006), pp. 57-62
[27.]
M.J. Spangehl, B.A. Masri, J.X. O’Connell, C.P. Duncan.
Prospective analysis of preoperative and intraoperative investigations for the diagnosis of infection at the sites of two hundred and two revision total hip arthroplasties..
J Bone Joint Surg Am, 81 (1999), pp. 672-683
[28.]
D.B. Mikkelsen, C. Pedersen, T. Hojbjerg, H.C. Schonheyder.
Culture of multiple peroperative biopsies and diagnosis of infected knee arthroplasties.
[29.]
A. Trampuz, K.E. Piper, A.D. Hanssen, D.R. Osmon, F.R. Cockerill, J.M. Steckelberg, et al.
Sonication of explanted prosthetic components in bags for diagnosis of prosthetic joint infection is associated with risk of contamination.
J Clin Microbiol, 44 (2006), pp. 628-631
[30.]
E. Senneville, C. Savage, I. Nallet, Y. Yazdanpanah, F. Giraud, H. Migaud, et al.
Improved aero-anaerobe recovery from infected prosthetic joint samples taken from 72 patients and collected intraoperatively in Rosenow's broth.
Acta Orthop, 77 (2006), pp. 120-124
[31.]
B.L. Atkins, N. Athanasou, J.J. Deeks, D.W. Crook, H. Simpson, T.E. Peto, et al.
Prospective evaluation of criteria for microbiological diagnosis of prostheticjoint infection at revision arthroplasty. The OSIRIS Collaborative Study Group.
J Clin Microbiol, 36 (1998), pp. 2932-2939
[32.]
M.A. Mont, B.J. Waldman, D.S. Hungerford.
Evaluation of preoperative cultures befote second-stage reimplantation of a total knee prótesis complicated by infection.
J Bone Surg, 82-A (2000), pp. 1152-1157
[33.]
Murillo O, Marín M, Calatayud L, Ochiuzzi ME, Domínguez MA, Verdaguer R, et al. Resistencia de Staphylococcus coagulasa negativo a fluorquinolonas y rifampicina en el tratamiento de infecciones protésicas tardías: un seudofallo terapéutico. XI Congreso SEIMC. Bilbao, mayo 2004
[34.]
D.J. Kilgus, D.J. Howe, A. Strang.
Results of periprosthetic hip and knee infections caused by resistant bacteria.
Clin Orthop Relat Res, 404 (2002), pp. 116-124
[35.]
S.J. Volin, S.H. Hinrichs, K.L. Garvin.
Two-stage reimplantation of total joint infections: a comparison of resistant and non-resistant organisms.
Clin Orthop Relat Res, 427 (2004), pp. 94-100
[36.]
C.D. Salgado, S. Dash, J.R. Cantey, C.E. Marculescu.
Higher risk of failure of methicillin-resistant Staphylococcus aureus prosthetic joint infections.
Clin Orthop Relat Res, (2007),
[37.]
M. Nixon, B. Jackson, P. Varghese, D. Jenkins, G. Taylor.
Methicillin-resistant Staphylococcus aureus on orthopaedic wards: incidence, spread, mortality, cost and control.
J Bone Joint Surg Br, 88 (2006), pp. 812-817
[38.]
C.C. Tai, A.A. Nirvani, A. Holmes, S.P. Hughes.
Methicillin-resistant Staphylococcus aureus in orthopaedic surgery.
Int Orthop, 28 (2004), pp. 32-35
[39.]
S.S. Huang, R. Platt.
Risk of methicillin-resistant Staphylococcus aureus infection after previous infection or colonization.
Clin Infect Dis, 36 (2003), pp. 281-285
[40.]
B. Sankar, P. Hopgood, K.M. Bell.
The role of MRSA screening in joint-replacement surgery.
Int Orthop, 29 (2005), pp. 160-163
[41.]
M.H. Wilcox, J. Hall, H. Pike, P.A. Templeton, W.N. Fawley, P. Parnell, et al.
Use of perioperative mupirocin to prevent methicillin-resistant Staphylococcus aureus (MRSA) orthopaedic surgical site infections.
J Hosp Infect, 54 (2003), pp. 196-201
[42.]
J.C. De Lucas-Villarrubia, M. López-Franco, J.J. Granizo, J.C. de Lucas-García, E. Gómez-Barrena.
Strategy to control methicillin-resistant Staphylococcus aureus post-operative infection in orthopaedic surgery.
Int Orthop, 28 (2004), pp. 16-20
[43.]
P.B. Jensen, B. Bak, J.K. Moller.
Carriage of methicillin-resistant coagulase-negative staphylococci in two orthopaedic wards differing in antibiotic usage.
Microbial Ecol Health Dis, 13 (2001), pp. 100-104
[44.]
J. Ariza, M. Pujol, J. Cabo, C. Pena, N. Fernández, J. Linares, et al.
Vancomycin in surgical infections due to methicillin-resistant Staphylococcus aureus with heterogeneous resistance to vancomycin.
Lancet, 353 (1999), pp. 1587-1588
[45.]
B.P. Howden, P.D. Johnson, P.B. Ward, T.P. Stinear, J.K. Davies.
Isolates with low-level vancomycin resistance associated with persistent methicillin-resistant Staphylococcus aureus bacteremia.
Antimicrob Agents Chemother, 50 (2006), pp. 3039-3047
[46.]
P.G. Charles, P.B. Ward, P.D. Johnson, B.P. Howden, M.L. Grayson.
Clinical features associated with bacteremia due to heterogeneous vancomycin-intermediate Staphylococcus aureus.
Clin Infect Dis, 38 (2004), pp. 448-451
[47.]
G. Sakoulas, R.C. Moellering, G.M. Eliopoulos.
Adaptation of methicillin-resistant Staphylococcus aureus in the face of vancomycin therapy.
Clin Infect Dis, 42 (2006), pp. S40-S50
[48.]
G. Sakoulas, H.S. Gold, R.A. Cohen, L. Venkataraman, R.C. Moellering, G.M. Eliopoulos.
Effects of prolonged vancomycin administration on methicillin-resistant Staphylococcus aureus (MRSA) in a patient with recurrent bacteraemia.
J Antimicrob Chemother, 57 (2006), pp. 699-704
[49.]
L.K. Hidayat, D.I. Hsu, R. Quist, K.A. Shriner, A. Wong-Beringer.
High-dose vancomycin therapy for methicillin-resistant Staphylococcus aureus infections: efficacy and toxicity.
Arch Intern Med, 166 (2006), pp. 2138-2144
[50.]
A. Vuagnat, R. Stern, A. Lotthe, H. Schuhmacher, M. Duong, P. Hoffmeyer, et al.
High dose vancomycin for osteomyelitis: continuous vs. intermittent infusion.
J Clin Pharm Ther, 29 (2004), pp. 351-357
[51.]
M. Wysocki, F. Delatour, F. Faurisson, A. Rauss, Y. Pean, B. Misset, et al.
Continuous versus intermittent infusion of vancomycin in severe Staphylococcal infections: prospective multicenter randomized study.
Antimicrob Agents Chemother, 45 (2001), pp. 2460-2467
[52.]
D.L. Goldenberg.
Septic arthritis.
[53.]
S. Nade.
Septic arthritis.
Best Pract Res Clin Rheumatol, 17 (2003), pp. 183-200
[54.]
F.M. Jaberi, G.H. Shahcheraghi, M. Ahadzadeh.
1 Short-term intravenous antibiotic treatment of acute hematogenous bone and joint infection in children: a prospective randomized trial.
J Pediatr Orthop, 22 (2002), pp. 317-320
[55.]
G.A. Syrogiannopoulos, J.D. Nelson.
Duration of antimicrobial therapy for acute suppurative osteoarticular infections.
Lancet, 1 (1988), pp. 37-40
[56.]
J. Schrenzel, S. Harbarth, G. Schockmel, D. Genne, T. Bregenzer, U. Flueckiger, et al.
A randomized clinical trial to compare fleroxacin-rifampicin with flucloxacillin or vancomycin for the treatment of staphylococcal infection.
Clin Infect Dis, 39 (2004), pp. 1285-1292
[57.]
M.N. Gupta, R.D. Sturrock, M. Field.
A prospective 2-year study of 75 patients with adult-onset septic arthritis.
Rheumatology, 40 (2001), pp. 24-30
[58.]
M.B. Vinod, J. Matussek, N. Curtis, H.K. Graham, J.R. Carapetis.
Duration of antibiotics in children with osteomyelitis and septic arthritis.
J Paediatr Child Health, 38 (2002), pp. 363-367
[59.]
C.M. Odio, T. Ramírez, G. Arias, A. Abdelnour, I. Hidalgo, M.L. Herrera, et al.
Double blind, randomized, placebo-controlled study of dexamethasone therapy for hematogenous septic arthritis in children.
Pediatr Infect Dis J, 22 (2003), pp. 883-888
[60.]
L. Lazzarini, B.A. Lipsky, J.T. Mader.
Antibiotic treatment of osteomyelitis: what have we learned from 30 years of clinical trials?.
Int J Infect Dis, 9 (2005), pp. 127-138
[61.]
F.A. Waldvogel, G. Medoff, M.N. Swartz.
Treatment of osteomyelitis.
N Engl J Med, 283 (1970), pp. 822
[62.]
C.W. Norden, E. Shinners, K. Niederriter.
Clindamycin treatment of experimental chronic osteomyelitis due to Staphylococcus aureus.
J Infect Dis, 153 (1986), pp. 956-959
[63.]
C. Pigrau, B. Almirante, X. Flores, V. Falco, D. Rodríguez, I. Gasser, et al.
Spontaneous pyogenic vertebral osteomyelitis and endocarditis: incidence, risk factors, and outcome.
Am J Med, 118 (2005), pp. e17-e24
[64.]
F. Roblot, J.M. Besnier, L. Juhel, C. Vidal, S. Ragot, F. Bastides, et al.
Optimal duration of antibiotic therapy in vertebral osteomyelitis.
Semin Arthritis Rheum, 36 (2007), pp. 269-277
[65.]
J.T. Mader, J.H. Calhoun.
Staging and staging application in osteomyelitis.
Musculoskeletal Infections, pp. 63-67
[66.]
L. García San Miguel, J. Cobo, M. Pérez García, L. Cornide, V. Pintado, F. Grill, et al.
Conservative medical treatment of orthopedic implant-associated infections.
44th ICAAC,
[67.]
C.E. Chen, J.Y. Ko, J.W. Wang, C.J. Wang.
Infection after intramedullary nailing of the femur.
[68.]
W. Zimmerli, A. Widmer, M. Blatter, R. Frei, P.E. Ochsner.
Role of rifampin for treatment of orthopedic implan-related Staphylococcal infections.
JAMA, 270 (1998), pp. 1537-1541
[69.]
M.H. Eckman, S. Greenfield, W.C. Mackey, J.B. Wong, S. Kaplan, L. Sullivan, et al.
Foot infections in diabetic patients. Decision and cost-effectiveness analyses.
JAMA, 273 (1995), pp. 712-720
[70.]
D. Pittet, B. Wyssa, C. Herter-Clavel, K. Kursteiner, J. Vaucher, P.D. Lew.
Outcome of diabetic foot infections treated conservatively: a retrospective cohort study with long-term follow-up.
Arch Intern Med, 26 (1999), pp. 851-856
[71.]
N.G. Daver, S.A. Shelburne, R.L. Atmar, T.P. Giordano, C.E. Stager, C.A. Reitman, et al.
Oral step-down therapy is comparable to intravenous therapy for Staphylococcus aureus osteomyelitis.
J Infect, 54 (2007), pp. 539-544
[72.]
M. Javaloyas de Morlius, M. Monreal Portella.
Tratamiento antibiótico por vía oral de la osteomielitis bacteriana del adulto: resultados tras dos años de seguimiento.
Med Clin (Barc), 113 (1999), pp. 488-489
[73.]
M.F. Swiontkowski, D.P. Hanel, N.B. Vedder, J.R. Schwappach.
A comparison of short- and long-term intravenous antibiotic therapy in the postoperative management of adult osteomyelitis.
J Bone Joint Surg Br, 81 (1999), pp. 1046-1050
[74.]
A. Karwowska, H.D. Davies, T. Jadavji.
Epidemiology and outcome of osteomyelitis in the era of sequential intravenous-oral therapy.
Pediatr Infect Dis. J, 17 (1998), pp. 1021-1026
[75.]
N. Le Saux, A. Howard, N.J. Barrowman, I. Gaboury, M. Sampson, D. Moher.
Shorter courses of parenteral antibiotic therapy do not appear to influence response rates for children with acute hematogenous osteomyelitis: a systematic review.
BMC Infect Dis, 142 (2002), pp. 16
[76.]
A.D. Tice.
Outpatient parenteral antimicrobial therapy for osteomyelitis.
Infect Dis Clin North Am, 12 (1998), pp. 903-919
[77.]
C.M. Brandt, W.W. Sistrunk, M.C. Duffy, A.D. Hanssen, J.M. Steckelberg, D.M. Ilstrup, et al.
Staphylococcus aureus prosthetic joint infection treated with debridement and prosthesis retention.
Clin Infect Dis, 24 (1997), pp. 914-919
[78.]
P. Tattevin, A.C. Cremieux, P. Pottier, D. Huten, C. Carbon.
Prosthetic joint infection: when can prosthesis salvage be considered?.
Clin Infect Dis, 29 (1999), pp. 292-295
[79.]
J. Barberán, L. Aguilar, G. Carroquino, M.J. Giménez, B. Sánchez, D. Martínez, et al.
Conservative treatment of staphylococcal prosthetic joint infections in elderlypatients.
Am J Med, 119 (2006), pp. 993.e7-993.e10
[80.]
C.E. Marculescu, E.F. Berbari, A.D. Hanssen, J.M. Steckelberg, S.W. Harmsen, J.N. Mandrekar, et al.
Outcome of prosthetic joint infections treated with debridement and retention of components.
Clin Infect Dis, 42 (2006), pp. 471-478
[81.]
J.R. Crockarell, A.D. Hanssen, D.R. Osmon, B.F. Morrey.
Treatment of infection with debridement and retention of the components following hip arthroplasty.
J Bone Joint Surg Am, 80 (1998), pp. 1306-1313
[82.]
C. Deirmengian, J. Greenbaum, P.A. Lotke, R.E. Booth Jr, J.H. Lonner.
Limited success with open debridement and retention of components in the treatment of acute Staphylococcus aureus infections after total knee arthroplasty.
J Arthroplasty, 18 (2003), pp. 22-26
[83.]
A.M. Meehan, D.R. Osmon, M.C. Duffy, A.D. Hanssen, M.R. Keating.
Outcome of penicillin-susceptible streptococcal prosthetic joint infection treated with debridement and retention of the prosthesis.
Clin Infect Dis, 36 (2003), pp. 845-849
[84.]
A. Soriano, S. García, G. Bori, M. Almela, X. Gallart, F. Macule, et al.
Treatment of acute post-surgical infection of joint arthroplasty.
Clin Microbiol Infect, 12 (2006), pp. 930-933
[85.]
C.E. Marculescu, E.F. Berbari, A.D. Hanssen, J.M. Steckelberg, D.R. Osmon.
Prosthetic joint infection diagnosed postoperatively by intraoperative culture.
Clin Orthop Relat Res, 439 (2005), pp. 38-42
[86.]
P.D. Siney, B.M. Wroblewski, V.V. Raut.
One-stage revision of total hip arthroplasty for deep infection. Long-term follow up.
Clin Orthop, 321 (1995), pp. 202-207
[87.]
J. Segreti, J.A. Nelson, G.M. Trenholme.
Prolonged suppressive antibiotic therapy for infected orthopedic prostheses.
Clin Infect Dis, 274 (1998), pp. 711-713
[88.]
N. Rao, L.S. Crossett, R.K. Sinha, J.L. Le Frock.
Long-term suppression of infection in total joint arthroplasty.
Clin Orthop Relat Res, 414 (2003), pp. 55-60
[89.]
F. Kutscha-Lissberg, U. Hebler, G. Muhr, M. Köller.
Linezolid penetration into bone and joint tissues infected with methicillin-resistant staphylococci.
Antimicrob Agents Chemother, 47 (2003), pp. 3964-3966
[90.]
C.E. Edmiston Jr, M.P. Goheen, G.R. Seabrook, C.P. Johnson, B.D. Lewis, K.R. Brown, et al.
Impact of selective antimicrobial agents on staphylococcal adherence to biomedical devices.
Am J Surg, 192 (2006), pp. 344-354
[91.]
J. Curtin, M. Cormican, G. Fleming, J. Keelehan, E. Colleran.
Linezolid compared with eperezolid, vancomycin, and gentamicin in an in vitro model of antimicrobial lock therapy for Staphylococcus epidermidis central venous catheter-related biofilm infections.
Antimicrob Agents Chemother, 47 (2003), pp. 3145-3148
[92.]
I.I. Raad, H.A. Hanna, M. Boktour, G. Chaiban, R.Y. Hachem, T. Dvorak, et al.
Vancomycin-resistant Enterococcus faecium: catheter colonization, esp gene, and decreased susceptibility to antibiotics in biofilm.
Antimicrob Agents Chemother, 49 (2005), pp. 5046-5050
[93.]
C.O. Aneziokoro, J.P. Cannon, C.T. Pachucki, J.R. Lentino.
The effectiveness and safety of oral linezolid for the primary and secondary treatment of osteomyelitis.
J Chemother, 17 (2005), pp. 643-650
[94.]
M. Bassetti, F. Vitale, G. Melica, E. Righi, A. di Biagio, L. Molfetta, et al.
Linezolid in the treatment of Gram-positive prosthetic joint infections.
J Antimicrob Chemother, 55 (2005), pp. 387-390
[95.]
E. Senneville, L. Legout, M. Valette, Y. Yazdanpanah, E. Beltrand, M. Caillaux, et al.
Effectiveness and tolerability of prolonged linezolid treatment for chronic osteomyelitis: a retrospective study.
Clin Ther, 28 (2006), pp. 1155-1163
[96.]
N. Rao, C.W. Hamilton.
Efficacy and safety of linezolid for Gram-positive orthopedic infections: a prospective case series.
Diagn Microbiol Infect Dis, (2007),
[97.]
C.R. Rayner, L.M. Baddour, M.C. Birmingham, C. Norden, A.K. Meagher, J.J. Schentag.
Linezolid in the treatment of osteomyelitis: results of compassionate useexperience.
Infection, 32 (2004), pp. 8-14
[98.]
R.R. Razonable, D.R. Osmon, J.M. Steckelberg.
Linezolid therapy for orthopedic infections.
Mayo Clin Proc, 79 (2004), pp. 1137-1144
[99.]
Herruzo A, Rodríguez D, Pigrau C, Villar M, Pahissa A, Flores X. Effectiveness and tolerability of prolonged linezolid therapy for chronic osteomyelitis. 26th European bone and bone infection society. Corfu, septiembre 2007.
[100.]
A. Soriano, J. Gómez, L. Gómez, J.R. Azanza, R. Pérez, F. Romero, et al.
Efficacy and tolerability of prolonged linezolid therapy in the treatment of orthopedic implant infections.
Eur J Clin Microbiol Infect Dis, 26 (2007), pp. 353-356
[101.]
E. Senneville, L. Legout, M. Valette, Y. Yazdanpanah, F. Giraud, E. Beltrand, et al.
Risk factors for anaemia in patients on prolonged linezolid therapy for chronic osteomyelitis: a case-control study.
J Antimicrob Chemother, 54 (2004), pp. 798-802
[102.]
J.P. Rho, I.G. Sia, B.A. Crum, M.B. Dekutoski, R.T. Trousdale.
Linezolid-associated peripheral neuropathy.
Mayo Clin Proc, 79 (2004), pp. 927-930
[103.]
J.C. Rucker, S.R. Hamilton, D. Bardenstein, C.M. Isada, M.S. Lee.
Linezolid-associated toxic optic neuropathy.
[104.]
A.S. De Vriese, R.V. Coster, J. Smet, S. Seneca, A. Lovering, L.L. van Haute, et al.
Linezolid-induced inhibition of mitochondrial protein synthesis.
Clin Infect Dis, 42 (2006), pp. 1111-1117
[105.]
J.T. Mader, K. Adams.
Comparative evaluation of daptomycin (LY146032) and vancomycin in the treatment of experimental methicillin-resistant Staphylococcus aureus osteomyelitis in rabbits.
Antimicrob Agents Chemother, 33 (1989), pp. 689-692
[106.]
K.C. Lamp, L.V. Friedrich.
Clinical experience with daptomycin for the treatment of osteomyelitis in patients with post-therapy follow-up (post L-1557).
46th ICAAC,
[107.]
M.E. Falagas, K.P. Giannopoulou, F. Ntziora, P.J. Papagelopoulos.
Daptomycin for treatment of patients with bone and joint infections: a systematic review of the clinical evidence.
Int J Antimicrob Agents, (2007),
[108.]
F.M. Marty, W.W. Yeh, C.B. Wennersten, L. Venkataraman, E. Albano, E.P. Alyea, et al.
Emergence of a clinical daptomycin-resistant Staphylococcus aureus isolate during treatment of methicillin-resistant Staphylococcus aureus bacteremia and osteomyelitis.
J Clin Microbiol, 44 (2006), pp. 595-597
[109.]
C.A. Burns.
Daptomycin-rifampin for a recurrent MRSA joint infection unresponsive to vancomycin-based therapy.
Scand J Infect Dis, 38 (2006), pp. 133-136
[110.]
L.Y. Yin, L. Lazzarini, F. Li, C.M. Stevens, J.H. Calhoun.
Comparative evaluation of tigecycline and vancomycin, with and without rifampicin, in the treatment of methicillin-resistant Staphylococcus aureus experimental osteomyelitis in a rabbit model.
J Antimicrob Chemother, 55 (2005), pp. 995-1002
[111.]
J. LeFrock, A. Ristuccia.
Teicoplanin in the treatment of bone and joint infections: an open study.
J Infect Chemother, 5 (1999), pp. 32-39
[112.]
R.N. Greenberg.
Treatment of bone, joint, and vascular-access-associated gram-positive bacterial infections with teicoplanin.
Antimicrob Agents Chemother, 34 (1990), pp. 2392-2397
[113.]
W.G. Weinberg.
Safety and efficacy of teicoplanin for bone and joint infections: results of a community-based trial.
South Med J, 86 (1993), pp. 891-897
[114.]
N. Markowitz, E.L. Quinn, L.D. Saravolatz.
Trimethoprim-sulfamethoxazole compared with vancomycin for the treatment of Staphylococcus aureus infection.
Ann Intern Med, 117 (1992), pp. 390-398
[115.]
J.D. Szumowski, D.E. Cohen, F. Kanaya, K.H. Mayer.
Treatment and outcomes of infections by methicillin-resistant Staphylococcus aureus at an ambulatory clinic.
Antimicrob Agents Chemother, 51 (2007), pp. 423-428
[116.]
C. Sánchez, A. Matamala, M. Salavert, E. Cuchi, M. Pons, F. Anglés, et al.
Cotrimoxazol más rifampicina en el tratamiento de infecciones osteoarticulares.
Enferm Infecc Microbiol Clin, 15 (1997), pp. 10-13
[117.]
A. Stein, J.F. Bataille, M. Drancourt, G. Curvale, J.N. Argenson, P. Groulier, et al.
Ambulatory treatment of multidrug-resistant Staphylococcus-infected orthopedic implants with high-dose oral co-trimoxazole (trimethoprim-sulfamethoxazole).
Antimicrob Agents Chemother, 42 (1998), pp. 3086-3091
[118.]
S.L. Kaplan, E.O. Mason, R.D. Feigin.
Clindamycin versus nafcillin or methicillin in the treatment of Staphylococcus aureus osteomyelitis in children.
South Med J, 75 (1982), pp. 138-142
[119.]
R.D. Feigin, L.K. Pickering, D. Anderson, R.E. Keeney, P.G. Shackleford.
Clindamycin treatment of osteomyelitis and septic arthritis in children.
Pediatrics, 55 (1975), pp. 213-223
[120.]
W. Rodríguez, S. Ross, W. Khan, D. McKay, P. Moskowitz.
Clindamycin in the treatment of osteomyelitis in children: a report of 29 cases.
Am J Dis Child, 131 (1977), pp. 1088-1093
[121.]
J.T. Mader, K. Adams, L. Morrison.
Comparative evaluation of cefazolin and clindamycin in the treatment of experimental Staphylococcus aureus osteomyelitis in rabbits.
Antimicrob Agents Chemother, 33 (1989), pp. 1760-1764
[122.]
K.J. Mayberry-Carson, W.R. Mayberry, B.K. Tober-Meyer, J.W. Costerton, D.W. Lambe.
An electron microscopic study of the effect of clindamycin on adherence of Staphylococcus aureus to bone surfaces.
Microbios, 45 (1986), pp. 21-32
[123.]
G.K. Siberry, T. Tekle, K. Carroll, J. Dick.
Failure of clindamycin treatment of methicillin-resistant Staphylococcus aureus expressing inducible clindamycin resistance in vitro.
Clin Infect Dis, 37 (2003), pp. 1257-1260
[124.]
H.M. Blumberg, D. Rimland, D.J. Carroll, P. Terry, I.K. Wachsmuth.
Rapid development of ciprofloxacin resistance in methicillin-susceptible and resistant Staphylococcus aureus.
J Infect Dis, 163 (1991), pp. 1279-1285
[125.]
D.N. Gilbert, S.J. Kohlhepp, K.A. Slama, G. Grunkemeier, G. Lewis, R.J. Dworkin, et al.
Phenotypic resistance of Staphylococcus aureus, selected Enterobacteriaceae, and Pseudomonas aeruginosa after single and multiple in vitro exposures to ciprofloxacin, levofloxacin, and trovafloxacin.
Antimicrob Agents Chemother, 45 (2001), pp. 883-892
[126.]
A.A. Firsov, I.Y. Lubenko, S.N. Vostrov, Y.A. Portnoy, S.H. Zinner.
Antistaphylococcal effect related to the area under the curve/MIC ratio in an in vitro dynamic model: predicted breakpoints versus clinically achievable values for seven fluoroquinolones.
Antimicrob. Agents Chemother, 49 (2005), pp. 2642-2647
[127.]
O. Murillo, A. Domenech, A. García, F. Tubau, C. Cabellos, F. Gudiol, et al.
Efficacy of high doses of levofloxacin in experimental foreign-body infection by methicillin-susceptible Staphylococcus aureus.
Antimicrob Agents Chemother, 50 (2006), pp. 4011-4017
[128.]
D. Bahl, D.A. Miller, I. Leviton, P. Gialanella, M.J. Wolin, W. Liu, et al.
In vitro activities of ciprofloxacin and rifampin alone and in combination agains growing and nongrowing strains of methicillin-susceptible and methicillinresistant Staphylococcus aureus.
Antimicrob Agents Chemother, 41 (1997), pp. 1293-1297
[129.]
J. Blaser, P. Vergeres, A. Widmer, W. Zimmerli.
In vivo verification of in vitro model of antibiotic treatment of device-related infection.
Antimicrob Agents Chemother, 39 (1995), pp. 1134-1139
[130.]
W. Zimmerli, R. Frei, A. Widmer, Z. Rajacic.
Microbiological tests to predict treatment outcome in experimental devic-related infections due to Staphylococcus aureus.
J Antimicrob Chemother, 33 (1994), pp. 959-967
[131.]
J.L. Kadurugamuwa, L.V. Sin, J. Yu, K.P. Francis, R. Kimura, T. Purchio, et al.
Rapid direct method for monitoring antibiotics in a mouse model of bacterial biofilm infection.
Antimicrob Agents Chemother, 47 (2003), pp. 3130-3137
[132.]
A. Widmer, A. Gaechter, P.E. Ochsner, W. Zimmerli.
Antimicrobial treatment of orthopedic implant-related infections with rifampin combinations.
Clin Infect Dis, 14 (1992), pp. 1251-1253
[133.]
M. Drancourt, A. Stein, J.N. Argenson, A. Zannier, G. Curvale, D. Raoult.
Oral rifampin plus ofloxacin for treatment of Staphylococcus-infected orthopedic implants.
Antimicrob Agents Chemother, 37 (1993), pp. 1214-1218
[134.]
M. Drancourt, A. Stein, J.N. Argenson, R. Roiron, P. Groulier, D. Raoult.
Oral treatment of Staphylococcus spp. infected orthopaedic implants with fusidic acid or ofloxacin in combination with rifampicin.
J Antimicrob Chemother, 39 (1997), pp. 235-240
[135.]
G.W. Kaatz, S.M. Seo, S.L. Barriere, L.M. Albrecht, M.J. Rybak.
Ciprofloxacin and rifampin, alone and in combination, for therapy of experimental Staphylococcus aureus endocarditis.
Antimicrob Agents Chemother, 33 (1989), pp. 1184-1187
[136.]
B. Atkins, T. Gottlieb.
Fusidic acid in bone and joint infections.
Int J Antimicrob Agents, 12 (1999), pp. S79-S93
[137.]
J. Ng, I.B. Gosbell.
Successful oral pristinamycin therapy for osteoarticular infections due to methicillin-resistant Staphylococcus aureus (MRSA) and other Staphylococcus spp.
J Antimicrob Chemother, 55 (2005), pp. 1008-1012
Copyright © 2008. Elsevier España S.L.. Todos los derechos reservados
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos