This article analyzes both the monetary and non-monetary effects of the education level of the head of the household on poverty. We propose that schooling returns should not be thought as a single number - usually the schooling coefficient in an income equation - but as a set of elements whose length depends on the number of identified poverty dimensions. The monetary analysis employs the Quantile Regression technique, very helpful especially when one is interested in extremes of the income distribution function. Our results show differences across quantiles of the returns. We also found interesting dissimilarities by gender and urban-rural location. Exploring the non-pecuniary returns, we found that the education of the head positively influences family health and housing conditions.
En este artículo se analizan los efectos monetarios y no monetarios que tiene en la pobreza el nivel de educación del jefe de familia. Se plantea que los retornos a la educación no deben ser vistos como una cifra–generalmente un coeficiente de educación en una ecuación para el cálculo de los ingresos– sino como una serie de elementos cuya duración depende del número de aspectos identificados de la pobreza. Se utilizó la técnica de regresión por cuantiles, la cual es útil cuando se está interesado en los extremos de la función de distribución de ingresos. Los resultados demuestran diferencias entre los cuantiles de los retornos. Se encontraron diferencias interesantes por género y ubicación rural/urbana. Una exploración de los retornos no pecuniarios reveló que la educación del jefe de familia influye positivamente en las condiciones de salud y vivienda de la familia.
O artigo analisa os efeitos monetários e os não-monetários do nível de escolaridade do chefe de família na situação de pobreza. Propomos que o rendimento da escolaridade não seja pensado como um simples número– usualmente o coeficiente de escolaridade em uma equação da renda–mas como um conjunto de elementos cuja extensão depende da quantidade de dimensões de pobreza identificadas. A análise monetária usa a técnica de Regressão Quantil, muito útil especialmente quando estamos interessados nos extremos da função de distribuição das rendas. Nossos resultados mostram diferenças entre os quantis dos retornos. Também encontrámos interessantes desigualdades conforme o sexo e a localização urbana-rural. Explorando os retornos não pecuniários, descobrimos que a educação do chefe de família influencia positivamente a saúde familiar e as condições de habitação.
I am grateful to the Colombian Department of Statistics (DANE) for providing the database. The support and comments of my supervisor Erik Schokkaert have been fundamental. I am also grateful to professors Paul de Grauwe and Geert Dhaene, and my colleagues Bram Thuysbaert and Julio Cesar Alonso, who gave useful comments to an earlier version of the article.