metricas
covid
Buscar en
European Journal of Psychiatry
Toda la web
Inicio European Journal of Psychiatry Clock drawing test with convolutional neural networks to discriminate mild cogni...
Información de la revista
Vol. 38. Núm. 3.
(julio - septiembre 2024)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 38. Núm. 3.
(julio - septiembre 2024)
Original article
Clock drawing test with convolutional neural networks to discriminate mild cognitive impairment
Visitas
2
Jin-Hyuck Park
Autor para correspondencia
roophy@naver.com

Correspondence to:, Room 1401, College of Medical Science, 22 Soonchunhyang-ro, Shinchang-myeon, Asan-si, Chungcheongnam-do 31538, Republic of Korea.
Department of Occupational Therapy, College of Medical Science, Soonchunhyang University, Asan, Republic of Korea
Este artículo ha recibido
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Figuras (4)
Mostrar másMostrar menos
Tablas (2)
Table 1. General characteristics of participants (n = 177).
Table 2. Convolutional neural network classification model performance and the MoCA-K for detection of MCI.
Mostrar másMostrar menos
Abstract
Background and objectives

The Clock Drawing Test (CDT) is a tool to assess cognitive function. Despite its usefulness, its interpretation remains challenging, leading to a low reliability. The main objective of this study was to determine the feasibility of using the CDT with convolutional neural networks (CNNs) as a screening tool for amnestic type of mild cognitive impairment (a-MCI).

Methods

A total of 177 CDT images were obtained from 103 healthy controls (HCs) and 74 patients with a-MCI. CNNs were trained to classify MCI based on the CDT images. To evaluate the performance of the CDT with CNNs, accuracy, sensitivity, specificity, precision, and f1-score were calculated. To compare discriminant power, the area under the curve of the CDT with CNNs and the Korean version of the Montreal Cognitive Assessment (MoCA-K) was calculated by the receiving operating characteristic curve analysis.

Results

The CDT with CNNs was more accurate in discriminating a-MCI (CDT with CNNs = 88.7%, MoCA-K = 81.8%). Furthermore, the CDT with CNNs could better discriminate a-MCI than the MoCA-K (AUC: CDT with CNNs = 0.886, MoCA-K = 0.848).

Conclusion

These results demonstrate the superiority of the CDT with CNNs to the MoCA-K for distinguishing a-MCI from HCs. The CDT with CNNs could be a surrogate for a conventional screening tool for a-MCI.

Keywords:
Screening
Convolutional neural network
Clock drawing test
Mild cognitive impairment

Artículo

Opciones para acceder a los textos completos de la publicación European Journal of Psychiatry
Suscriptor
Suscriptor de la revista

Si ya tiene sus datos de acceso, clique aquí.

Si olvidó su clave de acceso puede recuperarla clicando aquí y seleccionando la opción "He olvidado mi contraseña".
Comprar
Comprar acceso al artículo

Comprando el artículo el PDF del mismo podrá ser descargado

Precio 19,34 €

Comprar ahora
Contactar
Teléfono para suscripciones e incidencias
De lunes a viernes de 9h a 18h (GMT+1) excepto los meses de julio y agosto que será de 9 a 15h
Llamadas desde España
932 415 960
Llamadas desde fuera de España
+34 932 415 960
E-mail
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos