Información de la revista
Vol. 28. Núm. 9.
Páginas 576-590 (noviembre 2005)
Vol. 28. Núm. 9.
Páginas 576-590 (noviembre 2005)
Red nacional de investigación en hepatología y gastroenterología. RNIHG
DOI: 10.1157/13080611
Acceso a texto completo
Patogenia e inmunoterapia de la enfermedad inflamatoria intestinal: lecciones de los modelos animales
Visitas
5942
M. Aceituno, J. Panés
Servicio de Gastroenterología. Institut de Malalties Digestives i Metabòliques. Hospital Clínic, IDIBAPS. Barcelona. España
Este artículo ha recibido
Información del artículo
El Texto completo está disponible en PDF
Bibliografía
[1.]
C.O. Elson, R.B. Sartor, G.S. Tennyson, R.H. Riddell.
Experimental models of inflammatory bowel disease.
Gastroenterology, 109 (1995), pp. 1344-1367
[2.]
L.V. Chalifoux, R.T. Bronson.
Colonic adenocarcinoma associated with chronic colitis in cotton top marmosets, Saguinus oedipus.
Gastroenterology, 80 (1981), pp. 942-946
[3.]
J.P. Sundberg, C.O. Elson, H. Bedigian, E.H. Birkenmeier.
Spontaneous, heritable colitis in a new substrain of C3H/HeJ mice.
Gastroenterology, 107 (1994), pp. 1726-1735
[4.]
Y. Cong, S.L. Brandwein, R.P. McCabe, A. Lazenby, E.H. Birkenmeier, J.P. Sundberg, et al.
CD4+ T cells reactive to enteric bacterial antigens in spontaneously colitic C3H/HeJBir mice: increased T helper cell type 1 response and ability to transfer disease.
J Exp Med, 187 (1998), pp. 855-864
[5.]
S. Matsumoto, Y. Okabe, H. Setoyama, K. Takayama, J. Ohtsuka, H. Funahashi, et al.
Inflammatory bowel disease-like enteritis and caecitis in a senescence accelerated mouse P1/Yit strain.
Gut, 43 (1998), pp. 71-78
[6.]
T.T. Pizarro, K.O. Arseneau, F. Cominelli.
Lessons from genetically engineered animal models XI. Novel mouse models to study pathogenic mechanisms of Crohn's disease.
Am J Physiol Gastrointest Liver Physiol, 278 (2000), pp. 665G-669G
[7.]
R.C. Burns, J. Rivera-Nieves, C.A. Moskaluk, S. Matsumoto, F. Cominelli, K. Ley.
Antibody blockade of ICAM-1 and VCAM-1 ameliorates inflammation in the SAMP-1/Yit adoptive transfer model of Crohn's disease in mice.
Gastroenterology, 121 (2001), pp. 1428-1436
[8.]
B.R. MacPherson, C.J. Pfeiffer.
Experimental production of diffuse colitis in rats.
Digestion, 17 (1978), pp. 135-150
[9.]
Y. Yamada, S. Marshall, R.D. Specian, M.B. Grisham.
A comparative analysis of two models of colitis in rats.
Gastroenterology, 102 (1992), pp. 1524-1534
[10.]
P. Sharon, W.F. Stenson.
Metabolism of arachidonic acid in acetic acid colitis in rats. Similarity to human inflammatory bowel disease.
Gastroenterology, 88 (1985), pp. 55-63
[11.]
G.P. Morris, P.L. Beck, M.S. Herridge, W.T. Depew, M.R. Szewczuk, J.L. Wallace.
Hapten-induced model of chronic inflammation and ulceration in the rat colon.
Gastroenterology, 96 (1989), pp. 795-803
[12.]
M.F. Neurath, I. Fuss, B.L. Kelsall, E. Stuber, W. Strober.
Antibodies to interleukin 12 abrogate established experimental colitis in mice.
J Exp Med, 182 (1995), pp. 1281-1290
[13.]
P.J. Mannon, I.J. Fuss, L. Mayer, C.O. Elson, W.J. Sandborn, D. Present, et al.
Anti-interleukin-12 antibody for active Crohn's disease.
N Engl J Med, 351 (2004), pp. 2069-2079
[14.]
M. Sans, J. Panés, E. Ardite, J.I. Elizalde, Y. Arce, M. Elena, et al.
VCAM-1 and ICAM-1 mediate leukocyte-endothelial cell adhesion in rat experimental colitis.
Gastroenterology, 116 (1999), pp. 874-883
[15.]
S. Ghosh, E. Goldin, F.H. Gordon, H.A. Malchow, J. Rask-Madsen, P. Rutgeerts, et al.
Natalizumab for active Crohn's disease.
N Engl J Med, 348 (2003), pp. 24-32
[16.]
H.J. Hodgson, B.J. Potter, J. Skinner, D.P. Jewell.
Immunecomplex mediated colitis in rabbits. An experimental model.
Gut, 19 (1978), pp. 225-232
[17.]
G.M. Ekstrom, S.E. Andersson.
Plasma exudation, hyperaemia, and epithelial permeability in rats with oxazolone-induced colitis: modulatory effects of budesonide.
Scand J Gastroenterol, 35 (2000), pp. 190-197
[18.]
M. Boirivant, I.J. Fuss, A. Chu, W. Strober.
Oxazolone colitis: a murine model of T helper cell type 2 colitis treatable with antibodies to interleukin 4.
J Exp Med, 188 (1998), pp. 1929-1939
[19.]
B.J. Whittle.
Temporal relationship between cyclooxygenase inhibition, as measured by prostacyclin biosynthesis, and the gastrointestinal damage induced by indomethacin in the rat.
Gastroenterology, 80 (1981), pp. 94-98
[20.]
I. Bjarnason, N. Hopkinson, G. Zanelli, P. Prouse, P. Smethurst, J.M. Gumpel, et al.
Treatment of non-steroidal anti-inflammatory drug induced enteropathy.
Gut, 31 (1990), pp. 777-780
[21.]
H. Satoh, P.H. Guth, M.I. Grossman.
Role of bacteria in gastric ulceration produced by indomethacin in the rat: cytoprotective action of antibiotics.
Gastroenterology, 84 (1983), pp. 483-489
[22.]
J. Watt, R. Marcus.
Experimental ulcerative disease of the colon in animals.
Gut, 14 (1973), pp. 506-510
[23.]
A.B. Onderdonk, R.L. Cisneros, R.T. Bronson.
Enhancement of experimental ulcerative colitis by immunization with Bacteroides vulgatus.
Infect Immun, 42 (1983), pp. 783-788
[24.]
K.Y. Ling, D. Bhalla, D. Hollander.
Mechanisms of carrageenan injury of IEC18 small intestinal epithelial cell monolayers.
Gastroenterology, 95 (1988), pp. 1487-1495
[25.]
I. Okayasu, S. Hatakeyama, M. Yamada, T. Ohkusa, Y. Inagaki, R. Nakaya.
A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice.
Gastroenterology, 98 (1990), pp. 694-702
[26.]
A. Soriano, A. Salas, A. Salas, M. Sans, M. Gironella, M. Elena, et al.
VCAM-1, but not ICAM-1 or MAdCAM-1, immunoblockade ameliorates DSS-induced colitis in mice.
Lab Invest, 80 (2000), pp. 1541-1551
[27.]
A. Salas, M. Gironella, A. Salas, A. Soriano, M. Sans, J. Iovanna, et al.
Nitric oxide supplementation ameliorates dextran sulfate sodium-induced colitis in mice.
Lab Invest, 82 (2002), pp. 597-607
[28.]
J. Segui, M. Gironella, M. Sans, S. Granell, F. Gil, M. Gimeno, et al.
Superoxide dismutase ameliorates TNBS-induced colitis by reducing oxidative stress, adhesion molecule expression, and leukocyte recruitment into the inflamed intestine.
J Leukoc Biol, 76 (2004), pp. 537-544
[29.]
R.P. Bucy, X.Y. Xu, J. Li, G. Huang.
Cyclosporin A-induced autoimmune disease in mice.
J Immunol, 151 (1993), pp. 1039-1050
[30.]
R.B. Sartor, W.J. Cromartie, D.W. Powell, J.H. Schwab.
Granulomatous enterocolitis induced in rats by purified bacterial cell wall fragments.
Gastroenterology, 89 (1985), pp. 587-595
[31.]
T. Yamada, R.B. Sartor, S. Marshall, R.D. Specian, M.B. Grisham.
Mucosal injury and inflammation in a model of chronic granulomatous colitis in rats.
Gastroenterology, 104 (1993), pp. 759-771
[32.]
H. Schorle, T. Holtschke, T. Hunig, A. Schimpl, I. Horak.
Development and function of T cells in mice rendered interleukin-2 deficient by gene targeting.
Nature, 352 (1991), pp. 621-624
[33.]
B. Sadlack, H. Merz, H. Schorle, A. Schimpl, A.C. Feller, I. Horak.
Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene.
Cell, 75 (1993), pp. 253-261
[34.]
R. Kuhn, J. Lohler, D. Rennick, K. Rajewsky, W. Muller.
Interleukin-10-deficient mice develop chronic enterocolitis.
Cell, 75 (1993), pp. 263-274
[35.]
S. Kawachi, S. Jennings, J. Panés, A. Cockrell, F.S. Laroux, L. Gray, et al.
Cytokine and endothelial cell adhesion molecule expression in interleukin-10-deficient mice.
Am J Phyisiol, 278 (2000), pp. 734G-743G
[36.]
D.M. Spencer, G.M. Veldman, S. Banerjee, J. Willis, A.D. Levine.
Distinct inflammatory mechanisms mediate early versus late colitis in mice.
Gastroenterology, 122 (2002), pp. 94-105
[37.]
K. Takeda, B.E. Clausen, T. Kaisho, T. Tsujimura, N. Terada, I. Forster, et al.
Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils.
Immunity, 10 (1999), pp. 39-49
[38.]
S.D. Spencer, F. Di Marco, J. Hooley, S. Pitts-Meek, M. Bauer, A.M. Ryan, et al.
The orphan receptor CRF2-4 is an essential subunit of the interleukin 10 receptor.
J Exp Med, 187 (1998), pp. 571-578
[39.]
D. Kontoyiannis, M. Pasparakis, T.T. Pizarro, F. Cominelli, G. Kollias.
Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies.
Immunity, 10 (1999), pp. 387-398
[40.]
U. Rudolph, M.J. Finegold, S.S. Rich, G.R. Harriman, Y. Srinivasan, P. Brabet, et al.
Ulcerative colitis and adenocarcinoma of the colon in G alpha i2-deficient mice.
Nat Genet, 10 (1995), pp. 143-150
[41.]
P. Mombaerts, E. Mizoguchi, M.J. Grusby, L.H. Glimcher, A.K. Bhan, S. Tonegawa.
Spontaneous development of inflammatory bowel disease in T cell receptor mutant mice.
Cell, 75 (1993), pp. 274-282
[42.]
I. Takahashi, H. Kiyono, S. Hamada.
CD4+ T-cell population mediates development of inflammatory bowel disease in T-cell receptor alpha chain-deficient mice.
Gastroenterology, 112 (1997), pp. 1876-1886
[43.]
L. Dianda, A.M. Hanby, N.A. Wright, A. Sebesteny, A.C. Hayday, M.J. Owen.
T cell receptor-alpha beta-deficient mice fail to develop colitis in the absence of a microbial environment.
Am J Pathol, 150 (1997), pp. 91-97
[44.]
M. Watanabe, N. Watanabe, Y. Iwao, H. Ogata, T. Kanai, Y. Ueno, et al.
The serum factor from patients with ulcerative colitis that induces T cell proliferation in the mouse thymus is interleukin-7.
J Clin Immunol, 17 (1997), pp. 282-292
[45.]
M. Watanabe, Y. Ueno, T. Yajima, S. Okamoto, T. Hayashi, M. Yamazaki, et al.
Interleukin 7 transgenic mice develop chronic colitis with decreased interleukin 7 protein accumulation in the colonic mucosa.
J Exp Med, 187 (1998), pp. 389-402
[46.]
U. Freeden-Jeffry, N. Davidson, R. Wiler, M. Fort, S. Burdach, R. Murray.
IL-7 deficiency prevents development of a non-T cell non-B cell-mediated colitis.
J Immunol, 161 (1998), pp. 5673-5680
[47.]
S. Wirtz, S. Finotto, S. Kanzler, A.W. Lohse, M. Blessing, H.A. Lehr, et al.
Cutting edge: chronic intestinal inflammation in STAT-4 transgenic mice: characterization of disease and adoptive transfer by TNF- plus IFN-gamma-producing CD4+ T cells that respond to bacterial antigens.
J Immunol, 162 (1999), pp. 1884-1888
[48.]
R.E. Hammer, S.D. Maika, J.A. Richardson, J.P. Tang, J.D. Taurog.
Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human beta 2m: an animal model of HLA-B27-associated human disorders.
Cell, 63 (1990), pp. 1099-1112
[49.]
J.D. Taurog, J.A. Richardson, J.T. Croft, W.A. Simmons, M. Zhou, J.L. Fernández-Sueiro, et al.
The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats.
J Exp Med, 180 (1994), pp. 2359-2364
[50.]
H. De Winter, H. Cheroutre, M. Kronenberg.
Mucosal immunity and inflammation (II). The yin and yang of T cells in intestinal inflammation: pathogenic and protective roles in a mouse colitis model.
Am J Physiol, 276 (1999), pp. 1317G-1321G
[51.]
G.A. Hollander, S.J. Simpson, E. Mizoguchi, A. Nichogiannopoulou, J. She, J.C. Gutiérrez-Ramos, et al.
Severe colitis in mice with aberrant thymic selection.
Immunity, 3 (1995), pp. 27-38
[52.]
U. Steinhoff, V. Brinkmann, U. Klemm, P. Aichele, P. Seiler, U. Brandt, et al.
Autoimmune intestinal pathology induced by hsp60-specific CD8 T cells.
Immunity, 11 (1999), pp. 349-358
[53.]
S. Okamoto, M. Watanabe, M. Yamazaki, T. Yajima, T. Hayashi, H. Ishii, et al.
A synthetic mimetic of CD4 is able to suppress disease in a rodent model of immune colitis.
Eur J Immunol, 29 (1999), pp. 355-366
[54.]
S.J. Simpson, E. Mizoguchi, D. Allen, A.K. Bhan, C. Terhorst.
Evidence that CD4+, but not CD8+ T cells are responsible for murine interleukin-2-deficient colitis.
Eur J Immunol, 25 (1995), pp. 2618-2625
[55.]
A. Mizoguchi, E. Mizoguchi, R.N. Smith, F.I. Preffer, A.K. Bhan.
Suppressive role of B cells in chronic colitis of T cell receptor alpha mutant mice.
J Exp Med, 186 (1997), pp. 1749-1756
[56.]
R. Boismenu, W.L. Havran.
Modulation of epithelial cell growth by intraepithelial gamma delta T cells.
Science, 266 (1994), pp. 1253-1255
[57.]
S.J. Simpson, S. Shah, M. Comiskey, Y.P. De Jong, B. Wang, E. Mizoguchi, et al.
T cell-mediated pathology in two models of experimental colitis depends predominantly on the interleukin 12/Signal transducer and activator of transcription (Stat)-4 pathway, but is not conditional on interferon gamma expression by T cells.
J Exp Med, 187 (1998), pp. 1225-1234
[58.]
J. Panés, D.N. Granger.
Leukocyte-endothelial cell interactions: molecular mechanisms and implications in gastrointestinal disease.
Gastroenterology, 114 (1998), pp. 1066-1090
[59.]
M.L. Hermiston, J.I. Gordon.
Inflammatory bowel disease and adenomas in mice expressing a dominant negative N-cadherin.
Science, 270 (1995), pp. 1203-1207
[60.]
C.M. Panwala, J.C. Jones, J.L. Viney.
A novel model of inflammatory bowel disease: mice deficient for the multiple drug resistance gene, mdr1a, spontaneously develop colitis.
J Immunol, 161 (1998), pp. 5733-5744
[61.]
J. Panés, M. Perry, D.N. Granger.
Leukocyte-endothelial cell adhesion: avenues for therapeutic intervention.
Br J Pharmacol, 129 (1999), pp. 1-14
[62.]
J. Panés.
Adhesion molecules in inflammatory bowel disease.
Pathophysiology, 5 (1999), pp. 271-282
[63.]
J. Panés, M.A. Perry, D.C. Anderson, A. Manning, B. Leone, G. Cepinskas, et al.
Regional differences in constitutive and induced ICAM-1 expression in vivo.
Am J Physiol, 269 (1995), pp. 1955H-1964H
[64.]
M. Sans, A. Salas, A. Soriano, N. Prats, M. Gironella, P. Pizcueta, et al.
Differential role of selectins in experimental colitis.
Gastroenterology, 120 (2001), pp. 1162-1172
[65.]
E.M. Conner, S. Brand, J.M. Davis, F.S. Laroux, V.J. Palombella, J.W. Fuseler, et al.
Proteasome inhibition attenuates nitric oxide synthase expression, VCAM-1 transcription and the development of chronic colitis.
J Pharmacol Exp Ther, 282 (1997), pp. 1615-1622
[66.]
S. Kawachi, A. Cockrell, F.S. Laroux, L. Gray, D.N. Granger, H.C. Van der Heyde, et al.
Role of inducible nitric oxide synthase in the regulation of VCAM-1 expression in gut inflammation.
American Journal of Physiology, 277 (1999), pp. 572G-576G
[67.]
J.R. Hoult, P.K. Moore, A.J. Marcus, J. Watt.
On the effect of sulphasalazine on the prostaglandin system and the defective prostaglandin inactivation observed in experimental ulcerative colitis.
Agents Actions Suppl, (1979), pp. 232-244
[68.]
R.D. Zipser, J.B. Patterson, H.W. Kao, C.J. Hauser, R. Locke.
Hypersensitive prostaglandin and thromboxane response to hormones in rabbit colitis.
Am J Physiol, 249 (1985), pp. 457G-463G
[69.]
J.L. Wallace, W.K. MacNaughton, G.P. Morris, P.L. Beck.
Inhibition of leukotriene synthesis markedly accelerates healing in a rat model of inflammatory bowel disease.
Gastroenterology, 96 (1989), pp. 29-36
[70.]
D. Rachmilewitz, P.L. Simon, L.W. Schwartz, D.E. Griswold, J.D. Fondacaro, M.A. Wasserman.
Inflammatory mediators of experimental colitis in rats.
Gastroenterology, 97 (1989), pp. 326-337
[71.]
J. Vilaseca, A. Salas, F. Guarner, R. Rodríguez, J.R. Malagelada.
Participation of thromboxane and other eicosanoid synthesis in the course of experimental inflammatory colitis.
Gastroenterology, 98 (1990), pp. 269-277
[72.]
O.H. Nielsen, J. Rask-Madsen.
Mediators of inflammation in chronic inflammatory bowel disease.
Scand J Gastroenterol Suppl, 216 (1996), pp. 149-159
[73.]
S. Videla, J. Vilaseca, F. Casellas, F. Guarner.
Eicosanoides y enfermedad inflamatoria intestinal.
Gastroenterol Hepatol, 14 (1991), pp. 25-34
[74.]
M.D. Barrachina, J. Panés, J.V. Esplugues.
Role of nitric oxide in gastrointestinal inflammatory and ulcerative diseases: perspective for drugs development.
Curr Pharm Des, 7 (2001), pp. 31-48
[75.]
X.W. Qu, H. Wang, I.G. De Plaen, R.A. Rozenfeld, W. Hsueh.
Neuronal nitric oxide synthase (NOS) regulates the expression of inducible NOS in rat small intestine via modulation of nuclear factor kappa B.
FASEB J, 15 (2001), pp. 439-446
[76.]
C. Fiocchi.
Cytokines and animal models: a combined path to inflammatory bowel disease pathogenesis.
Gastroenterology, 104 (1993), pp. 1202-1205
[77.]
C. Fiocchi.
Inflammatory bowel disease: etiology and pathogenesis.
Gastroenterology, 115 (1998), pp. 182-205
[78.]
S.R. Targan, S.B. Hanauer, S.J. Van Deventer, L. Mayer, D.H. Present, T. Braakman, et al.
A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor alpha for Crohn's disease. Crohn's Disease cA2 Study Group.
N Engl J Med, 337 (1997), pp. 1029-1035
[79.]
S. Videla, A. García-Lafuente, M. Antolin, J. Vilaseca, F. Guarner, E. Crespo, et al.
Antitumor necrosis factor therapy in rat chronic granulomatous colitis: critical dose-timing effects on outcome.
J Pharmacol Exp Ther, 287 (1998), pp. 854-859
[80.]
S. Videla, J. Vilaseca, F. Guarner, A. Salas, F. Treserra, E. Crespo, et al.
Role of intestinal microflora in chronic inflammation and ulceration of the rat colon.
Gut, 35 (1994), pp. 1090-1097
[81.]
P.J. Morrissey, K. Charrier.
Induction of wasting disease in SCID mice by the transfer of normal CD4+/CD45RBhi T cells and the regulation of this autoreactivity by CD4+/CD45RBlo T cells.
Res Immunol, 145 (1994), pp. 357-362
[82.]
S. Videla, J. Vilaseca, F. Guarner, A. Salas, G. González, M. Antolin, et al.
Stimulation of mucosal inflammatory activity by the normal fecal flora in a rat model of colitis.
Inflamm Bowel Dis, 3 (1997), pp. 191-197
[83.]
A. García-Lafuente, M. Antolín, F. Guarner, E. Crespo, A. Salas, P. Forcada, et al.
Derangement of mucosal barrier function by bacteria colonizing the rat colonic mucosa.
Eur J Clin Invest, 28 (1998), pp. 1019-1026
[84.]
A. García-Lafuente, M. Antolín, F. Guarner, E. Crespo, A. Salas, P. Forcada, et al.
Incrimination of anaerobic bacteria in the induction of experimental colitis.
Am J Physiol, 272 (1997), pp. 10G-15G
Copyright © 2005. Elsevier España S.L.. Todos los derechos reservados