metricas
covid
Buscar en
Neurología (English Edition)
Toda la web
Inicio Neurología (English Edition) Cerebrospinal fluid cytotoxicity in lateral amyotrophic sclerosis
Información de la revista
Vol. 25. Núm. 6.
Páginas 364-373 (enero 2009)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 25. Núm. 6.
Páginas 364-373 (enero 2009)
Acceso a texto completo
Cerebrospinal fluid cytotoxicity in lateral amyotrophic sclerosis
La citotoxicidad del líquido cefalorraquídeo en la esclerosis lateral amiotrófica
Visitas
1835
J. Matías-Guiua,
Autor para correspondencia
inc.hcsc@salud.madrid.org

Corresponding author.
, L. Galána, R. García-Ramosa, J.A. Barciab, A. Guerreroa
a Servicio de Neurología, Instituto de Neurociencias, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
b Servicio de Neurocirugía, Instituto de Neurociencias, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
Este artículo ha recibido
Información del artículo
Abstract
Introduction

The cytotoxicity of cerebrospinal fluid (CSF) in patients with lateral amyotrophic sclerosis in cell cultures that include neurons may be considered as a diffusion mechanism of the disease, due to the proximity of the CSF to the spinal column.

Development

Various literature studies suggest that the motor neurons are more susceptible to cytotoxicity compared to other neuron cells, including glial, in cell cultures. The review of the composition of CSF in lateral amyotrophic sclerosis gives few clues on how this mechanism causes pre-apoptotic and apoptotic changes on the addition on CSF to the cultures, although it could be associated with the glutamate receptors, to a greater extent in those that respond to AMPA/kainate, and have a role in ion channels.

Conclusions

The cytotoxicity of CSF is a peculiarity of lateral amyotrophic sclerosis, which could explain some aspects of how the disease progresses. More studies are required in order to understand more about this mechanism, including better identification of patients from whom samples are obtained, as well as their characteristics, differentiating them into familial or sporadic.

Keywords:
Lateral amyotrophic sclerosis
Cerebrospinal fluid
Cytotoxicity
Cell cultures
Resumen
Introducción

La citotoxicidad del líquido cefalorraquídeo (LCR) de pacientes con esclerosis lateral amiotrófica en cultivos celulares que incluyen neuronas puede plantearse como un mecanismo de difusión de la enfermedad, debido a la cercanía del LCR a la médula espinal.

Desarrollo

Los diferentes estudios de la literatura indican una mayor susceptibilidad del efecto citotóxico en las motoneuronas, frente a otro tipo de células neuronales y la inclusión de glía en los cultivos. La revisión de la composición del LCR en la esclerosis lateral amiotrófica no permite indicar mediante qué mecanismo se producen cambios preapoptóticos y apoptóticos con la adición del LCR a los cultivos, aunque podría estar relacionado con los receptores del glutamato, en mayor medida, aquellos que responden a AMPA/kainato, e intervenir en canales iónicos.

Conclusiones

La citotoxicidad del LCR es una singularidad de la esclerosis lateral amiotrófica que podría explicar aspectos evolutivos de la enfermedad. Para el mejor conocimiento de este mecanismo, es necesario que nuevos estudios incluyan una mayor identificación de los pacientes de quienes se obtienen las muestras, así como sus características, y diferenciar si son formas familiares o esporádicas.

Palabras clave:
Esclerosis lateral amiotrófica
Líquido cefalorraquídeo
Citotoxicidad
Cultivos celulares
El Texto completo está disponible en PDF
References
[1.]
F. Wolfgram, L. Myers.
Amyotrophic lateral sclerosis: effect of serum on anterior horn cells in tissue culture.
Science, 179 (1973), pp. 579-580
[2.]
F. Wolfgram.
Blind studies on the effect of amyotrophic lateral sclerosis sera on motor neurons in vitro.
UCLA Forum Med Sci, 19 (1976), pp. 145-149
[3.]
I. Maher, A. Pouplard-Barthelaix, J. Emile.
Cytotoxicity of serum from amyotrophic lateral sclerosis patients on spinal cord cells in culture.
Adv Exp Med Biol, 209 (1987), pp. 75-77
[4.]
F.J. Roisen, H. Bartfeld, H. Donnenfeld, J. Baxter.
Neuron specific in vitro cytotoxicity of sera from patients with amyotrophic lateral sclerosis.
Muscle Nerve, 5 (1982), pp. 48-53
[5.]
R. Van der Neut, W.H. Gispen, P.R. Bär.
Serum from patients with amyotrophic lateral sclerosis induces the expression of B-50/GAP-43 and neurofilament in cultured rat fetal spinal neurons.
Mol Chem Neuropathol, 14 (1991), pp. 247-258
[6.]
P. Doherty, J.G. Dickson, T.P. Flanigan, P.G. Kennedy, F.S. Welah.
Effects of amyotrophic lateral sclerosis serum on cultured chick spinal neurons.
Neurology, 36 (1986), pp. 1330-1334
[7.]
M.S. Horwich, W.K. Engel, P.B. Chauvin.
Amyotrophic lateral sclerosis sera applied to cultured motor neurons.
Arch Neurol, 30 (1974), pp. 332-333
[8.]
J. Liveson, H. Frey, M.B. Bornstein.
The effect of serum from ALS patients on organotypic nerve and muscle tissue cultures.
Acta Neuropathol, 32 (1975), pp. 127-131
[9.]
J.R. Lehrich, J. Couture.
Amyotrophic lateral sclerosis sera are not cytotoxic to neuroblastoma cells in tissue culture.
Ann Neurol, 4 (1978), pp. 384
[10.]
G. Touzeau, A.C. Kato.
Effects of amyotrophic lateral sclerosis sera on cultured cholinergic neurons.
Neurology, 33 (1983), pp. 317-322
[11.]
G. Touzeau, A.C. Kato.
ALS serum has no effect on three enzymatic activities in cultured human spinal cord neurons.
Neurology, 36 (1986), pp. 573-576
[12.]
S.J. Yu, E.S. Lo, E.J. Cochran, D.H. Lin, C.J. Faselis, H.L. Klawans, et al.
Cerebrospinal fluid from patients with Parkinson's disease alters the survival of dopamine neurons in mesencephalic culture.
Exp Neurol, 126 (1994), pp. 15-24
[13.]
R. Hao, R.B. Norgren, Y.S. Lau, R.F. Pfeiffer.
Cerebrospinal fluid of Parkinson's disease patients inhibits the growth and function of dopaminergic neurons in culture.
Neurology, 45 (1995), pp. 138-142
[14.]
R. Hao, M. Ebadi, R.F. Pfeiffer.
Selegiline protects dopaminergic neurons in culture from toxic factor(s) present in the cerebrospinal fluid of patients with Parkinson's disease.
Neurosci Lett, 200 (1995), pp. 77-80
[15.]
W.D. Le, D.B. Rowe, J. Jankovic, W. Xie, S.H. Appel.
Effects of cerebrospinal fluid from patients with Parkinson disease on dopaminergic cells.
Arch Neurol, 56 (1999), pp. 194-200
[16.]
G.T. Mandybur, Y. Miyagi, W. Yin, E. Perkins, J.H. Zhang.
Cytotoxicity of ventricular cerebrospinal fluid from Parkinson patients: correlation with clinical profiles and neurochemistry.
Neurol Res, 25 (2003), pp. 104-111
[17.]
P. Couratier, J. Hugon, P. Sindou, J.M. Vallat, M. Dumas.
Cell culture evidence for neuronal degeneration in amyotrophic lateral sclerosis being linked to glutamate AMPA/kainate receptors.
Lancet, 341 (1993), pp. 265-268
[18.]
T.N. Nagaraja, M. Gourie-Devi, A. Nalini, T.R. Raju.
Neurofilament phosphorylation is enhanced in cultured chick spinal cord neurons exposed to cerebrospinal fluid from amyotrophic lateral sclerosis patients.
Acta Neuropathol, 88 (1994), pp. 349-352
[19.]
M.S. Rao, M.G. Devi, A. Nalini, N. Shahani, T.R. Raju.
Neurofilament phosphorylation is increased in ventral horn neurons of neonatal rat spinal cord exposed to cerebrospinal fluid from patients with amyotrophic lateral sclerosis.
Neurodegeneration, 4 (1995), pp. 397-401
[20.]
F. Terro, M. Lesort, F. Viader, A. Ludolph, J. Hugon.
Antioxidant drugs block in vitro the neurotoxicity of CSF from patients with amyotrophic lateral sclerosis.
Neuroreport, 7 (1996), pp. 1970-1972
[21.]
N. Shahani, A. Nalini, M. Gourie-Devi, T.R. Raju.
Reactive astrogliosis in neonatal rat spinal cord after exposure to cerebrospinal fluid from patients with amyotrophic lateral sclerosis.
Exp Neurol, 149 (1998), pp. 295-298
[22.]
Y. Manabe, K. Kashihara, Y. Shiro, T. Shohmori, K. Abe.
Enhanced Fos expression in rat lumbar spinal cord cultured with cerebrospinal fluid from patients with amyotrophic lateral sclerosis.
Neurol Res, 21 (1999), pp. 309-312
[23.]
R.G. Smith, Y.K. Henry, M.P. Mattson, S.H. Appel.
Presence of 4-hydroxynonenal in cerebrospinal fluid of patients with sporadic amyotrophic lateral sclerosis.
Ann Neurol, 44 (1998), pp. 696-699
[24.]
N. Shahani, M. Gourie-Devi, A. Nalini, T.R. Raju.
Cyclophosphamide attenuates the degenerative changes induced by CSF from patients with amyotrophic lateral sclerosis in the neonatal rat spinal cord.
J Neurol Sci, 185 (2001), pp. 109-118
[25.]
T.M. Tikka, N.E. Vartiainen, G. Goldsteins, S.S. Oja, P.M. Andersen, S.L. Marklund, et al.
Minocycline prevents neurotoxicity induced by cerebrospinal fluid from patients with motor neurone disease.
Brain, 125 (2002), pp. 722-731
[26.]
N. Shahani, M. Gourie-Devi, A. Nalini, P. Rammohan, K. Shobha, H.N. Harsha, et al.
(—)-Deprenyl alleviates the degenerative changes induced in the neonatal rat spinal cord by CSF from amyotrophic lateral sclerosis patients.
Amyotroph Lateral Scler Other Motor Neuron Disord, 5 (2004), pp. 172-179
[27.]
J.M. Anneser, C. Chahli, P.G. Ince, G.D. Borasio, P.J. Shaw.
Glial proliferation and metabotropic glutamate receptor expression in amyotrophic lateral sclerosis.
J Neuropathol Exp Neurol, 63 (2004), pp. 831-840
[28.]
I. Sen, A. Nalini, N.B. Joshi, P.G. Joshi.
Cerebrospinal fluid from amyotrophic lateral sclerosis patients preferentially elevates intracellular calcium and toxicity in motor neurons via AMPA/kainate receptor.
J Neurol Sci, 235 (2005), pp. 45-54
[29.]
J.M. Anneser, C. Chahli, G.D. Borasio.
Protective effect of metabotropic glutamate receptor inhibition on amyotrophic lateral sclerosis-cerebrospinal fluid toxicity in vitro.
Neuroscience, 141 (2006), pp. 1879-1886
[30.]
P.Y. Ramamohan, M. Gourie-Devi, A. Nalini, K. Shobha, Y. Ramamohan, P. Joshi, et al.
Cerebrospinal fluid from amyotrophic lateral sclerosis patients causes fragmentation of the Golgi apparatus in the neonatal rat spinal cord.
Amyotroph Lateral Scler, 8 (2007), pp. 79-82
[31.]
K. Shobha, K. Vijayalakshmi, P.A. Alladi, A. Nalini, T.N. Sathyaprabha, T.R. Raju.
Altered in-vitro and in-vivo expression of glial glutamate transporter-1 following exposure to cerebrospinal fluid of amyotrophic lateral sclerosis patients.
J Neurol Sci, 254 (2007), pp. 9-16
[32.]
R. Gunasekaran, R.S. Narayani, K. Vijayalakshmi, P.A. Alladi, K. Shobha, A. Nalini, et al.
Exposure to cerebrospinal fluid of sporadic amyotrophic lateral sclerosis patients alters Na(v)1.6 and K(v)1.6 channel expression in rat spinal motor neurons.
Brain Res, 1255 (2009), pp. 170-179
[33.]
V. Askanas, P.J. Marangos, W.K. Engel.
CSF from amyotrophic lateral sclerosis patients applied to motor neurons in culture fails to alter neuron-specific enolase.
Neurology, 31 (1981), pp. 1196-1197
[34.]
Y. Iwasaki, K. Ikeda, T. Shiojima, M. Tagaya, M. Kinoshita.
Amyotrophic lateral sclerosis cerebrospinal fluid is not toxic to cultured spinal motor neurons.
Neurol Res, 17 (1995), pp. 393-395
[35.]
O. Gredal, M.R. Witt, K. Dekermendjian, S.E. Moller, M. Nielsen.
Cerebrospinal fluid from amyotrophic lateral sclerosis has no effect on intracellular free calcium in cultured cortical neurons.
Mol Chem Neuropathol, 29 (1996), pp. 141-152
[36.]
G. Johnson, D. Brane, W. Block, D.P. Kammen, J. Gurklis, J.L. Peters, et al.
Cerebrospinal fluid protein variations in common to Alzheimer's disease and schizophrenia.
Appl Theor Electrophor, 3 (1992), pp. 47-53
[37.]
K. Blennow.
Cerebropinal fluid protein biomarkers for Alzheimer's disease.
Neuro Rx, 1 (2004), pp. 213-225
[38.]
L.H. Choe, M.J. Dutt, N. Relkin, K.H. Lee.
Studies of potential cerebrospinal fluid molecular markers for Alzheimer's disease.
[39.]
P. Davidsson, A. Westman-Brinkmalm, C.L. Nilsson, M. Lindbjer, L. Paulson, N. Andreasen, et al.
Proteome analysis of cerebrospinal fluid proteins in Alzheimer patients.
Neuro Rep, 13 (2002), pp. 611-615
[40.]
M. Sjögren, P. Davidsson, J. Gottfries, H. Vanderstichele, A. Edman, E. Vanmechelen, et al.
The cerebrospinal fluid levels of tau, growth-associated protein-43 and soluble amyloid precursor protein correlate in Alzheimer's disease, reflecting a common pathophysiological process.
Dement Geriatr Cogn Disord, 12 (2001), pp. 257-264
[41.]
M. Sjögren, P. Davidsson, M. Tullberg, L. Minthon, A. Wallin, C. Wikkelso, et al.
Both total and phosphorylated tau are increased in Alzheimer's disease.
J Neurol Neurosurg Psychiatry, 70 (2001), pp. 624-630
[42.]
P.J. Shaw.
Toxicity of CSF in motor neurone disease: a potential route to neuroprotection.
Brain, 125 (2002), pp. 693-694
[43.]
J. Matias-Guiu, L. Galan, R. Garcia-Ramos, A. Vela, A. Guerrero.
Epidemiología descriptiva en esclerosis lateral amiotrófica.
Neurología, 22 (2007), pp. 368-380
[44.]
J. Matías-Guiu, G. García-Ramos, L. Galán, A. Vela, A. Guerrero.
Epidemiología analítica de la esclerosis lateral amiotrófica.
Neurología, 23 (2008), pp. 168-178
[45.]
I. Niebroj-Dobosz, P. Janik.
Amino acids acting as transmitters in amyotrophic lateral sclerosis (ALS).
Acta Neurol Scand, 100 (1999), pp. 6-11
[46.]
T.L. Perry, C. Krieger, S. Hansen, A. Eisen.
Amyotrophic lateral sclerosis: amino acid levels in plasma and cerebrospinal fluid.
Ann Neurol, 28 (1990), pp. 12-17
[47.]
W. Camu, M. Billiard, M. Baldy-Moulinier.
Fasting plasma and CSF amino acid levels in amyotrophic lateral sclerosis: a subtype analysis.
Acta Neurol Scand, 88 (1993), pp. 51-55
[48.]
J. IΠzecka, T. Kocki, Z. Stelmasiak, W.A. Turski.
Endogenous protectant kynurenic acid in amyotrophic lateral sclerosis.
Acta Neurol Scand, 107 (2003), pp. 412-418
[49.]
I. Niebrój-Dobosz, I. Domitrz, A. Mickielewicz.
Cytotoxic activity of serum and cerebrospinal fluid of amyotrophic lateral sclerosis (ALS) patients against acetylcholinesterase.
Folia Neuropathol, 37 (1999), pp. 107-112
[50.]
T. Matsuishi, S. Nagamitsu, H. Shoji, M. Itoh, S. Takashima, T. Iwaki, et al.
Increased cerebrospinal fluid levels of substance P in patients with amyotrophic lateral sclerosis.
J Neural Transm, 106 (1999), pp. 943-948
[51.]
P. Hartikainen, K.J. Reinikainen, H. Soininen, J. Sirviö, R. Soikkeli, P.J. Riekkinen.
Neurochemical markers in the cerebrospinal fluid of patients with Alzheimer's disease Parkinson's disease and amyotrophic lateral sclerosis and normal controls.
J Neural Transm Park Dis Dement Sect, 4 (1992), pp. 53-68
[52.]
L. Werdelin, A. Gjerris, G. Boysen, J. Fahrenkrug, O.S. Jørgensen, J.F. Rehfeld.
Neuropeptides and neural cell adhesion molecule (NCAM) in CSF from patients with ALS.
Acta Neurol Scand, 79 (1989), pp. 177-181
[53.]
Y. Yoshida, F. Une, Y. Utatsu, M. Nomoto, Y. Furukawa, Y. Maruyama, et al.
Adenosine and neopterin levels in cerebrospinal fluid of patients with neurological disorders.
Intern Med, 38 (1999), pp. 133-139
[54.]
J. IΠzecka.
Prostaglandin E2 is increased in amyotrophic lateral sclerosis patients.
Acta Neurol Scand, 108 (2003), pp. 125-129
[55.]
G. Almer, P. Teismann, Z. Stevic, J. Halaschek-Wiener, L. Deecke, V. Kostic, et al.
Increased levels of the pro-inflammatory prostaglandin PGE2 in CSF from ALS patients.
Neurology, 58 (2002), pp. 1277-1279
[56.]
J.P. Malin, R. Ködding, H. Fuhrmann, A. Von zur Mühlen.
T4 T3 and rT3 levels in serum and cerebrospinal fluid of patients with amyotrophic lateral sclerosis.
J Neurol, 236 (1989), pp. 57-59
[57.]
A. Klimek, D. CieÊlak, J. Szulc-Kuberska, H. Stepien.
Reduced lumbar cerebrospinal fluid corticotropin releasing factor (CRF) levels in amyotrophic lateral sclerosis.
Acta Neurol Scand, 74 (1986), pp. 72-74
[58.]
S.D. Süssmuth, H. Tumani, D. Ecker, A.C. Ludolph.
Amyotrophic lateral sclerosis: disease stage related changes of tau protein and S100 beta in cerebrospinal fluid and creatine kinase in serum.
Neurosci Lett, 353 (2003), pp. 57-60
[59.]
M. Otto, E. Bahn, J. Wiltfang, I. Boekhoff, W. Beuche.
Decrease of S100 beta protein in serum of patients with amyotrophic lateral sclerosis.
Neurosci Lett, 240 (1998), pp. 171-173
[60.]
J. IΠecka.
Decreased cerebrospinal fluid cGMP levels in patients with amyotrophic lateral sclerosis.
J Neural Transm, 111 (2004), pp. 167-172
[61.]
M. Ikeda, I. Sato, T. Yuasa, T. Miyatake, S. Murota.
Nitrite, nitrate and cGMP in the cerebrospinal fluid in degenerative neurologic diseases.
J Neural Transm Gen Sect, 100 (1995), pp. 263-267
[62.]
T. Murata, C. Ohtsuka, Y. Terayama.
Increased mitochondrial oxidative damage and oxidative DNA damage contributes to the neurodegenerative process in sporadic amyotrophic lateral sclerosis.
Free Radic Res, 42 (2008), pp. 221-225
[63.]
T. Murata, C. Ohtsuka, Y. Terayama.
Increased mitochondrial oxidative damage in patients with sporadic amyotrophic lateral sclerosis.
J Neurol Sci, 267 (2008), pp. 66-69
[64.]
M. Sohmiya, M. Tanaka, Y. Suzuki, Y. Tanino, K. Okamoto, Y. Yamamoto.
An increase of oxidized coenzyme Q-10 occurs in the plasma of sporadic ALS patients.
J Neurol Sci, 228 (2005), pp. 49-53
[65.]
J.A. Molina, F. De Bustos, F.J. Jiménez-Jiménez, C. Gómez-Escalonilla, A. García-Redondo, J. Esteban, et al.
Serum levels of coenzyme Q10 in patients with amyotrophic lateral sclerosis.
J Neural Transm, 107 (2000), pp. 1021-1026
[66.]
D. Taskiran, A. Sagduyu, N. Yüceyar, F.Z. Kutay, S. Pögün.
Increased cerebrospinal fluid and serum nitrite and nitrate levels in amyotrophic lateral sclerosis.
Int J Neurosci, 101 (2000), pp. 65-72
[67.]
G. Siciliano, S. Piazza, C. Carlesi, A. Del Corona, M. Franzini, A. Pompella, et al.
Antioxidant capacity and protein oxidation in cerebrospinal fluid of amyotrophic lateral sclerosis.
J Neurol, 254 (2007), pp. 575-580
[68.]
M.C. Boll, M. Alcaraz-Zubeldia, S. Montes, C. Rios.
Free copper, ferroxidase and SOD1 activities, lipid peroxidation and NO(x) content in the CSF. A different marker profile in four neurodegenerative diseases.
Neurochem Res, 33 (2008), pp. 17-23
[69.]
H. Tohgi, T. Abe, K. Yamazaki, T. Murata, E. Ishizaki, C. Isobe.
Increase in oxidized NO products and reduction in oxidized glutathione in cerebrospinal fluid from patients with sporadic form of amyotrophic lateral sclerosis.
Neurosci Lett, 260 (1999), pp. 204-206
[70.]
F. De Bustos, F.J. Jiménez-Jiménez, J.A. Molina, J. Esteban, A. Guerrero-Sola, M. Zurdo, et al.
Cerebrospinal fluid levels of alpha-tocopherol in amyotrophic lateral sclerosis.
J Neural Transm, 105 (1998), pp. 703-708
[71.]
H. Ryberg, A.S. Söderling, P. Davidsson, K. Blennow, K. Caidahl, L.I. Persson.
Cerebrospinal fluid levels of free 3-nitrotyrosine are not elevated in the majority of patients with amyotrophic lateral sclerosis or Alzheimer's disease.
Neurochem Int, 45 (2004), pp. 57-62
[72.]
M.C. Boll, M. Alcaraz-Zubeldia, S. Montes, L. Murillo-Bonilla, C. Rios.
Raised nitrate concentration and low SOD activity in the CSF of sporadic ALS patients.
Neurochem Res, 28 (2003), pp. 699-703
[73.]
K. Widl, J. Brettschneider, D. Schattauer, S. Süssmuth, R. Huber, A.C. Ludolph, et al.
Erythropoietin in cerebrospinal fluid: agerelated reference values and relevance in neurological disease.
Neurochem Res, 32 (2007), pp. 1163-1168
[74.]
J. Brettschneider, K. Widl, H. Ehrenreich, M. Riepe, H. Tumani.
Erythropoietin in the cerebrospinal fluid in neurodegenerative diseases.
Neurosci Lett, 404 (2006), pp. 347-351
[75.]
J. Brettschneider, K. Widl, D. Schattauer, A.C. Ludolph, H. Tumani.
Cerebrospinal fluid erythropoietin (EPO) in amyotrophic lateral sclerosis.
Neurosci Lett, 416 (2007), pp. 257-260
[76.]
T.J. Montine, M.F. Beal, M.E. Cudkowicz, H. O’Donnell, R.A. Margolin, L. McFarland, et al.
Increased CSF F2-isoprostane concentration in probable AD.
Neurology, 52 (1999), pp. 562-565
[77.]
Y. Ihara, K. Nobukuni, H. Takata, T. Hayabara.
Oxidative stress and metal content in blood and cerebrospinal fluid of amyotrophic lateral sclerosis patients with and without a Cu Zn-superoxide dismutase mutation.
Neurol Res, 27 (2005), pp. 105-108
[78.]
J. Jacobsson, L. Rosengren, K. Blennow, P.M. Andersen.
Cerebrospinal fluid neurofilament light levels in amyotrophic lateral sclerosis: impact of SOD1 genotype.
Eur J Neurol, 14 (2007), pp. 1329-1333
[79.]
L.E. Rosengren, J.E. Karlsson, J.O. Karlsson, L.I. Persson, C. Wikkelsø.
Patients with amyotrophic lateral sclerosis and other neurodegenerative diseases have increased levels of neurofilament protein in CSF.
J Neurochem, 67 (1996), pp. 2013-2018
[80.]
F.J. Jiménez-Jiménez, A. Hernánz, S. Medina-Acebrón, F. De Bustos, J.M. Zurdo, H. Alonso, et al.
Tau protein concentrations in cerebrospinal fluid of patients with amyotrophic lateral sclerosis.
Acta Neurol Scand, 111 (2005), pp. 114-117
[81.]
M. Sjögren, P. Davidsson, A. Wallin, A.K. Granérus, E. Grundström, H. Askmark, et al.
Decreased CSF-beta-amyloid 42 in Alzheimer's disease and amyotrophic lateral sclerosis may reflect mismetabolism of beta-amyloid induced by disparate mechanisms.
Dement Geriatr Cogn Disord, 13 (2002), pp. 112-118
[82.]
J. Brettschneider, A. Petzold, S.D. Süssmuth, A.C. Ludolph, H. Tumani.
Axonal damage markers in cerebrospinal fluid are increased in ALS.
[83.]
P. Steinacker, C. Hendrich, A.D. Sperfeld, S. Jesse, C.A. Von Arnim, S. Lehnert, et al.
TDP-43 in cerebrospinal fluid of patients with frontotemporal lobar degeneration and amyotrophic lateral sclerosis.
Arch Neurol, 65 (2008), pp. 1481-1487
[84.]
T. Kasai, T. Tokuda, N. Ishigami, H. Sasayama, P. Foulds, D.J. Mitchell, et al.
Increased TDP-43 protein in cerebrospinal fluid of patients with amyotrophic lateral sclerosis.
Acta Neuropathol, 117 (2009), pp. 55-62
[85.]
J. IΠzecka, Z. Stelmasiak, B. Dobosz.
Matrix metalloproteinase-9 (MMP-9) activity in cerebrospinal fluid of amyotrophic lateral sclerosis patients.
Neurol Neurochir Pol, 35 (2001), pp. 1035-1043
[86.]
S. Lorenzl, D.S. Albers, P.A. LeWitt, J.W. Chirichigno, S.L. Hilgenberg, M.E. Cudkowicz, et al.
Tissue inhibitors of matrix metalloproteinases are elevated in cerebrospinal fluid of neurodegenerative diseases.
J Neurol Sci, 207 (2003), pp. 71-76
[87.]
J. IΠzecka.
Decreased cerebrospinal fluid cytochrome c levels in patients with amyotrophic lateral sclerosis.
Scand J Clin Lab Invest, 67 (2007), pp. 264-269
[88.]
M. Rentzos, C. Nikolaou, A. Rombos, F. Boufidou, M. Zoga, A. Dimitrakopoulos, et al.
RANTES levels are elevated in serum and cerebrospinal fluid in patients with amyotrophic lateral sclerosis.
Amyotroph Lateral Scler, 8 (2007), pp. 283-287
[89.]
J. IΠzecka.
Cerebrospinal fluid Flt3 ligand level in patients with amyotrophic lateral sclerosis.
Acta Neurol Scand, 114 (2006), pp. 205-209
[90.]
Y. Tsuboi, T. Yamada.
Increased concentration of C4d complement protein in CSF in amyotrophic lateral sclerosis.
J Neurol Neurosurg Psychiatry, 57 (1994), pp. 859-861
[91.]
I. Niebroj-Dobosz, D. Dziewulska, P. Janik.
Auto-antibodies against proteins of spinal cord cells in cerebrospinal fluid of patients with amyotrophic lateral sclerosis (ALS).
Folia Neuropathol, 44 (2006), pp. 191-196
[92.]
A. Greiner, B. Schmausser, K. Petzold, H. Krüger, A. Marx.
Neuronal targets of serum and cerebrospinal fluid autoantibodies in amyotrophic lateral sclerosis.
Acta Neuropathol, 91 (1996), pp. 67-71
[93.]
I. Niebroj-Dobosz, Z. Jamrozik, P. Janik, I. Hausmanowa- Petrusewicz, H. Kwieciƒski.
Anti-neural antibodies in serum and cerebrospinal fluid of amyotrophic lateral sclerosis (ALS) patients.
Acta Neurol Scand, 100 (1999), pp. 238-243
[94.]
T. Sekizawa, H. Openshaw, K. Ohbo, K. Sugamura, Y. Itoyama, J.C. Niland.
Cerebrospinal fluid interleukin 6 in amyotrophic lateral sclerosis: immunological parameter and comparison with inflammatory and non-inflammatory central nervous system diseases.
J Neurol Sci, 154 (1998), pp. 194-199
[95.]
C. Krieger, T.L. Perry, H.J. Ziltener.
Amyotrophic lateral sclerosis: interleukin-6 levels in cerebrospinal fluid.
Can J Neurol Sci, 19 (1992), pp. 357-359
[96.]
C. Moreau, D. Devos, V. Brunaud-Danel, L. Defebvre, T. Perez, A. Destée, et al.
Elevated IL-6 and TNF-alpha levels in patients with ALS: inflammation or hypoxia?.
[97.]
E. Grundström, D. Lindholm, A. Johansson, K. Blennow, H. Askmark.
GDNF but not BDNF is increased in cerebrospinal fluid in amyotrophic lateral sclerosis.
Neuroreport, 11 (2000), pp. 1781-1783
[98.]
H. Wilms, J. Sievers, R. Dengler, J. Bufler, G. Deuschl, R. Lucius.
Intrathecal synthesis of monocyte chemoattractant protein-1 (MCP-1) in amyotrophic lateral sclerosis: further evidence for microglial activation in neurodegeneration.
J Neuroimmunol, 144 (2003), pp. 139-142
[99.]
T. Nagata, I. Nagano, M. Shiote, H. Narai, T. Murakami, T. Hayashi, et al.
Elevation of MCP-1 and MCP-1/VEGF ratio in cerebrospinal fluid of amyotrophic lateral sclerosis patients.
Neurol Res, 29 (2007), pp. 772-776
[100.]
M. Tanaka, H. Kikuchi, T. Ishizu, M. Minohara, M. Osoegawa, K. Motomura, et al.
Intrathecal upregulation of granulocyte colony stimulating factor and its neuroprotective actions on motor neurons in amyotrophic lateral sclerosis.
J Neuropathol Exp Neurol, 65 (2006), pp. 816-825
[101.]
J. IΠzecka.
Cerebrospinal fluid vascular endothelial growth factor in patients with amyotrophic lateral sclerosis.
Clin Neurol Neurosurg, 106 (2004), pp. 289-293
[102.]
C. Moreau, D. Devos, V. Brunaud-Danel, L. Defebvre, T. Perez, A. Destée, et al.
Paradoxical response of VEGF expression to hypoxia in CSF of patients with ALS.
J Neurol Neurosurg Psychiatry, 77 (2006), pp. 255-257
[103.]
D. Devos, C. Moreau, P. Lassalle, T. Perez, J. De Seze, V. Brunaud-Danel, et al.
Low levels of the vascular endothelial growth factor in CSF from early ALS patients.
Neurology, 62 (2004), pp. 2127-2129
[104.]
D. CieÊlak, J. Szulc-Kuberska, H. Stepieƒ, A. Klimek.
Epidermal growth factor in human cerebrospinal fluid: reduced levels in amyotrophic lateral sclerosis.
J Neurol, 233 (1986), pp. 376-377
[105.]
J. IΠzecka, Z. Stelmasiak, B. Dobosz.
Transforming growth factor-Beta 1 (tgf-beta 1) in patients with amyotrophic lateral sclerosis.
Cytokine, 20 (2002), pp. 239-243
[106.]
E. Bilic, E. Bilic, I. Rudan, V. Kusec, N. Zurak, D. Delimar, et al.
Comparison of the growth hormone IGF-1 and insulin in cerebrospinal fluid and serum between patients with motor neuron disease and healthy controls.
Eur J Neurol, 13 (2006), pp. 1340-1345
[107.]
T. Pirttilä, S. Vanhatalo, U. Turpeinen, R. Riikonen.
Cerebrospinal fluid insulin-like growth factor-1, insulin growth factor binding protein-2 or nitric oxide are not increased in MS or ALS.
Acta Neurol Scand, 109 (2004), pp. 337-341
[108.]
J. Matías-Guiu, R. García-Ramos, L. Galán, J. Barcia.
Neuronal death in amyotrofic lateral sclerosis.
Neurología, 23 (2008), pp. 518-529
[109.]
P.H. Gordon, D.H. Moore, R.G. Miller, J.M. Florence, J.L. Verheijde, C. Doorish, et al.
Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial.
Lancet Neurol, 6 (2007), pp. 1045-1053
[110.]
J. Matias-Guiu, L. Galan, R. Garcia-Ramos, J.A. Barcia.
Superoxide dismutase: The cause of all amyotrophic lateral sclerosis?.
Ann Neurol, 64 (2008), pp. 356-357
[111.]
J. Gamez.
Minocycline for the treatment of amyotrophic lateral sclerosis: neuroprotector or neurotoxin? Reflections on another failure of translational medicine.
Neurología, 23 (2008), pp. 484-493
[112.]
L. Galán, A. Vela, A. Guerrero, J.A. Barcia, J.M. García-Verdugo, J. Matías-Guiu.
Modelos experimentales en esclerosis lateral amiotrófica.
Neurología, 22 (2007), pp. 381-388
[113.]
A.M. Clement, M.D. Nguyen, E.A. Roberts, M.L. Garcia, S. Boillee, M. Rule, et al.
Wild-type non neuronal cells extended survival of SOD1 mutant motor neurons in ALS mice.
Science, 302 (2003), pp. 113-117
[114.]
J.D. Rothstein, G. Tsai, R.W. Kuncl, L. Clawson, D.R. Cornblath, D.B. Drachman, et al.
Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis.
Ann Neurol, 28 (1990), pp. 18-25
[115.]
J.D. Rothstein, L.J. Martin, R.W. Kuncl.
Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis.
N Engl J Med, 326 (1992), pp. 1464-1468
[116.]
J.D. Rothstein, M. Van Kammen, A.I. Levey, L.J. Martin, R.W. Kuncl.
Selective loss glutamate transporter GLT-1 in amyotrophic lateral sclerosis.
Ann Neurol, 38 (1995), pp. 73-84
[117.]
A.C. Pardo, V. Wong, L.M. Benson, M. Dykes, K. Tanaka, J.D. Rothstein, et al.
Loss of the astrocyte glutamate transporter GTL1 modifies disease in SOD(G39A) mice.
Exp Neurol, 201 (2006), pp. 120-130
[118.]
J. Matías-Guiu, J.A. Barcia, J.M. García-Verdugo, L. Galán, A. Vela, R. García-Ramos.
Terapia celular en la esclerosis lateral amiotrófica.
Neurología, 23 (2008), pp. 226-237
[119.]
S. Boillee, K. Yamanaka, C.S. Lobsiger, N.G. Copeland, N.A. Jenkins, G. Kassiotis, et al.
Onset and progression in inherited ALS determined by motor neurons and microglia.
Science, 312 (2006), pp. 1389-1392
[120.]
T. Ekegren, J. Hanrieder, J. Bergquist.
Clinical perspectives of high-resolution mass spectrometry-based proteomics in neuroscience-Exemplified in amyotrophic lateral sclerosis biomarker discovery research.
J Mass Spectrom, 43 (2008), pp. 559-571
[121.]
M.H. Maurer.
Proteomics of brain extracellular fluid (ECF) and cerebrospinal fluid (CSF).
Mass Spectrom Rev, 29 (2010), pp. 17-28
[122.]
M. Ramström, I. Ivonin, A. Johansson, H. Askmark, K.E. Markides, R. Zubarev, et al.
Cerebrospinal fluid protein patterns in neurodegenerative disease revealed by liquid chromatography- Fourier transform ion cyclotron resonance mass spectrometry.
Proteomics, 4 (2004), pp. 4010-4018
[123.]
S. Ranganathan, E. Williams, P. Ganchev, V. Gopalakrishnan, D. Lacomis, L. Urbinelli, et al.
Proteomic profiling of cerebrospinal fluid identifies biomarkers for amyotrophic lateral sclerosis.
J Neurochem, 95 (2005), pp. 1461-1471
[124.]
S. Ranganathan, G.C. Nicholl, S. Henry, F. Lutka, R. Sathanoori, D. Lacomis, et al.
Comparative proteomic profiling of cerebrospinal fluid between living and post mortem ALS and control subjects.
Amyotroph Lateral Scler, 8 (2007), pp. 373-379
[125.]
J.M. Serot, D. Christmann, T. Dubost, M. Couturier.
Cerebrospinal fluid transthyretin: aging and late onset of Alzheimer's disease.
J Neurol Neurosurg Psychiatr, 63 (1997), pp. 506-508
[126.]
A. Biroccio, P. Del Boccio, M. Panella, S. Bernardini, C. Dillio, D. Gambi, et al.
Differential post-translational modifications of thansthyretin in Alzheimer's disease: a study of the cerebral spinal fluid.
Proteomics, 6 (2006), pp. 2005-2013
[127.]
G.M. Pasinetti, L.H. Ungar, D.J. Lange, S. Yemul, H. Deng, X. Yuan, et al.
Identification of potential CSF biomarkers in ALS.
[128.]
O. Carrette, I. Desmalte, A. Scherl, O. Yalkinoglu, G. Corthals, P. Burkhard, et al.
A panel of cerebrospinal fluid potential biomarkers for diagnosis of Alzheimer disease.
Proteomics, 3 (2003), pp. 1486-1494
[129.]
J. Brettschneider, H. Mogel, V. Lehmensiek, T. Ahlert, S. Süssmuth, A.C. Ludolph, et al.
Proteome analysis of cerebrospinal fluid in amyotrophic lateral sclerosis (ALS).
Neurochem Res, 33 (2008), pp. 2358-2363
[130.]
R.M. Mitchell, W.M. Freeman, W.T. Randazzo, H.E. Stephens, J.L. Beard, Z. Simmons, et al.
A CSF biomarker panel for identification of patients with amyotrophic lateral sclerosis.
[131.]
K.R. Wagner.
The need for biomarkers in amyotrophic lateral sclerosis drug development.
Copyright © 2010. Sociedad Española de Neurología
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos