covid
Buscar en
Revista Colombiana de Cardiología
Toda la web
Inicio Revista Colombiana de Cardiología Adipocinas y síndrome metabólico: múltiples facetas de un proceso fisiopatolÃ...
Información de la revista
Vol. 17. Núm. 4.
Páginas 167-176 (julio - agosto 2010)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 17. Núm. 4.
Páginas 167-176 (julio - agosto 2010)
Open Access
Adipocinas y síndrome metabólico: múltiples facetas de un proceso fisiopatológico complejo
Adipokines and metabolic syndrome: multiple aspects of a complex pathophysiological process
Visitas
9389
Julio C. Sánchez N.1,
Autor para correspondencia
jcsanchez@utp.edu.co

Correspondencia: AA 097. Departamento de Ciencias Básicas, Facultad Ciencias de la Salud. Universidad Tecnológica de Pereira. La Julita, Pereira, Risaralda, Colombia. Teléfono: (096) 313 71 27, Fax: (096) 313 71 25.
, Diego F. López Z.1, Óscar A. Pinzón D.1, Juan C. Sepúlveda A.1
1 Laboratorio de Fisiología Celular e Inmunología. Facultad Ciencias de la Salud. Universidad Tecnológica de Pereira. Pereira, Risaralda, Colombia
Este artículo ha recibido

Under a Creative Commons license
Información del artículo

Debido a la alta morbimortalidad de las enfermedades cardiovasculares y a su relación con trastornos de base como la obesidad y el síndrome metabólico, es crucial entender cuáles son los mecanismos y procesos que desencadenan la alteración del metabolismo y a su vez la generación de dichas enfermedades. En tal sentido, el tejido adiposo y el adipocito tienen un papel fundamental en este proceso, mediante la producción de múltiples adipocinas, algunas clásicas y otras de reciente descripción, pero que hasta ahora empieza a dilucidarse en medio del complejo panorama de interacciones fisiopatológicas conducentes al desarrollo de resistencia a la insulina y del complejo desequilibrio metabólico que conlleva un sinnúmero de complicaciones clínicas. Un grupo de estas adipocinas tiene claros efectos proinflamatorios, mientras que otras pueden clasificarse como anti-inflamatorias, las cuales contrarrestan en cierta medida y hasta cierto punto las acciones de las otras. Cuando esta homeostasis se rompe, la cascada de inflamación crónica allí originada desencadena resistencia a la insulina y se inicia el desarrollo del síndrome metabólico a partir de la obesidad, que a su vez genera alteraciones de la respuesta del adipocito a diferentes estímulos. Esto, sumado a los efectos de otros elementos, configura un complejo cuadro de factores que es necesario tener en cuenta para el abordaje correcto de la obesidad y sus patologías asociadas.

Palabras clave:
adipocinas
adipocito
síndrome metabólico
obesidad
inflamación

Due to the high morbidity and mortality of cardiovascular diseases and their relationship with basic disorders such as obesity and metabolic syndrome, the understanding of the mechanisms and processes that trigger metabolic alterations and generate such diseases, is a crucial matter. In this regard, adipose tissue and adipocytes have a crucial role in this process through the production of multiple adipokines, some of them classical and others recently described; however, until now their role is beginning to be elucidated in the middle of the complex picture of pathophysiological interactions leading to insulin resistance and the metabolic imbalance that leads to a large number of clinic complications. A group of these adipokines has clear pro-inflammatory effects, while others can be classified as anti-inflammatory, which counteract in some extent the effects of the others. When this homeostasis is broken, the originated cascade of chronic inflammation triggers insulin resistance and the metabolic syndrome is developed from obesity, which in turn generates changes in adipocyte response to different stimuli. This, together with the effects of other elements, forms a complex picture of factors that need to be considered for the correct management of obesity and its comorbidities.

Key words:
adipokines
adipocyte
metabolic syndrome
obesity
inflammation
El Texto completo está disponible en PDF
Bibliografía
[1.]
T. Zimmermann-Belsing, U. Feldt-Rasmussen.
Obesity: the new worldwide epidemic threat to general health and our complete lack of effective treatment.
Endocrinology, 145 (2004), pp. 1501-1502
[2.]
World Health Organization. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. Geneva,1997. WHO document WHO/NUT/NCD/98.1.
[3.]
J.B. Prins.
Adipose tissue as an endocrine organ.
Best Pract Res Clin Endocrinol Metab, 16 (2002), pp. 639-651
[4.]
P. Arner.
The adipocyte in insulin resistance: key molecules and the impact of the thiazolidinediones.
Trends Endocrinol Metab, 14 (2003), pp. 137-145
[5.]
B.M. Spiegelman, S. Enerback.
The adipocyte: a multifunctional cell.
Cell Metab, 4 (2006), pp. 425-427
[6.]
A. Sjoholm, T. Nystrom.
Inflammation and the etiology of type 2 diabetes.
Diabetes Metab Res Rev, 22 (2006), pp. 4-10
[7.]
G. Fruhbeck, J. Gomez-Ambrosi, F.J. Muruzabal, M.A. Burrell.
The adipocyte: a model for integration of endocrine and metabolic signaling in energy metabolism regulation.
Am J Physiol Endocrinol Metab, 280 (2001), pp. E827-E847
[8.]
B. Feve, Adipogenesis:.
cellular and molecular aspects.
Best Pract Res Clin Endocrinol Metab, 19 (2005), pp. 483-499
[9.]
R.V. Considine, J.F. Caro.
Leptin and the regulation of body weight.
Int J Biochem Cell Biol, 29 (1997), pp. 1255-1272
[10.]
C.F. Rueda-Clausen, V. Lahera, J. Calderón, I.C. Bolívar, V.R. Castillo, M. Gutiérrez, et al.
The presence of abdominal obesity is associated with changes in vascular function independently of other cardiovascular risk factors.
Int J Cardiol, 139 (2008), pp. 32-41
[11.]
R.S. Ahima, J.S. Flier.
Leptin. Annu Rev Physiol, 62 (2000), pp. 413-437
[12.]
N. Ghilardi, R.C. Skoda.
The leptin receptor activates janus kinase 2 and signals for proliferation in a factor-dependent cell line.
Mol Endocrinol, 11 (1997), pp. 393-399
[13.]
H. Fei, H.J. Okano, C. Li, G.H. Lee, C. Zhao, R. Darnell, et al.
Anatomic localization of alternatively spliced leptin receptors (Ob-R) in mouse brain and other tissues.
Proc Natl Acad Sci U S A, 94 (1997), pp. 7001-7005
[14.]
A. Elimam, A. Kamel, C. Marcus.
In vitro effects of leptin on human adipocyte metabolism.
Horm Res, 58 (2002), pp. 88-93
[15.]
P.E. Scherer, S. Williams, M. Fogliano, G. Baldini, H.F. Lodish.
A novel serum protein similar to C1q, produced exclusively in adipocytes.
J Biol Chem, 270 (1995), pp. 26746-26749
[16.]
A.H. Berg, T.P. Combs, P.E. Scherer.
ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism.
Trends Endocrinol Metab, 13 (2002), pp. 84-89
[17.]
T. Yamauchi, J. Kamon, Y. Minokoshi, Y. Ito, H. Waki, S. Uchida, et al.
Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase.
Nat Med, 8 (2002), pp. 1288-1295
[18.]
F. Vasseur.
Adiponectin and its receptors: partners contributing to the «vicious circle» leading to the metabolic syndrome?.
Pharmacol Res, 53 (2006), pp. 478-481
[19.]
T. Yamauchi, Y. Nio, T. Maki, M. Kobayashi, T. Takazawa, M. Iwabu, et al.
Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions.
Nat Med, 13 (2007), pp. 332-339
[20.]
M.J. Yoon, G.Y. Lee, J.J. Chung, Y.H. Ahn, S.H. Hong, J.B. Kim.
Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferatoractivated receptor alpha.
Diabetes, 55 (2006), pp. 2562-2570
[21.]
T. Kadowaki, T. Yamauchi.
Adiponectin and adiponectin receptors.
Endocr Rev, 26 (2005), pp. 439-451
[22.]
B.I. Shand, R.S. Scott, P.A. Elder, P.M. George.
Plasma adiponectin in overweight, nondiabetic individuals with or without insulin resistance.
Diabetes Obes Metab, 5 (2003), pp. 349-353
[23.]
O. Gualillo, J.R. González-Juanatey, F. Lago.
The emerging role of adipokines as mediators of cardiovascular function: physiologic and clinical perspectives.
Trends Cardiovasc Med, 17 (2007), pp. 275-283
[24.]
K.M. Ajuwon, M.E. Spurlock.
Adiponectin inhibits LPS-induced NF-kappaB activation and IL-6 production and increases PPARgamma2 expression in adipocytes.
Am J Physiol Regul Integr Comp Physiol, 288 (2005), pp. R1220-R1225
[25.]
J. Spranger, A. Kroke, M. Mohlig, M.M. Bergmann, M. Ristow, H. Boeing, et al.
Adiponectin and protection against type 2 diabetes mellitus.
[26.]
F. Lago, C. Dieguez, J. Goóez-Reino, O. Gualillo.
The emerging role of adipokines as mediators of inflammation and immune responses.
Cytokine Growth Factor Rev, 18 (2007), pp. 313-325
[27.]
C.M. Steppan, M.A. Lazar.
The current biology of resistin.
J Intern Med, 255 (2004), pp. 439-447
[28.]
J.N. Fain.
Release of interleukins and other inflammatory cytokines by human adipose tissue is enhanced in obesity and primarily due to the nonfat cells.
Vitam Horm, 74 (2006), pp. 443-477
[29.]
A. Niederwanger, M. Kranebitter, C. Ciardi, T. Tatarczyk, J.R. Patsch, M.T. Pedrini.
Resistin impairs basal and insulin-induced glycogen synthesis by different mechanisms.
Mol Cell Endocrinol, 263 (2007), pp. 112-119
[30.]
K.N. Conneely, K. Silander, L.J. Scott, K.L. Mohlke, K.N. Lazaridis, T.T. Valle, et al.
Variation in the resistin gene is associated with obesity and insulin-related phenotypes in Finnish subjects.
Diabetologia, 47 (2004), pp. 1782-1788
[31.]
S. Verma, S.H. Li, C.H. Wang, P.W. Fedak, R.K. Li, R.D. Weisel, et al.
Resistin promotes endothelial cell activation: further evidence of adipokine-endothelial interaction.
Circulation, 108 (2003), pp. 736-740
[32.]
S. Bo, R. Gambino, A. Pagani, S. Guidi, L. Gentile, M. Cassader, et al.
Relationships between human serum resistin, inflammatory markers and insulin resistance.
Int J Obes (Lond), 29 (2005), pp. 1315-1320
[33.]
P. Dandona, A. Aljada, A. Bandyopadhyay.
Inflammation: the link between insulin resistance, obesity and diabetes.
Trends Immunol, 25 (2004), pp. 4-7
[34.]
B. Antuna-Puente, B. Feve, S. Fellahi, J.P. Bastard.
Adipokines: the missing link between insulin resistance and obesity.
Diabetes Metab, 34 (2008), pp. 2-11
[35.]
J.N. Fain, A.K. Madan, M.L. Hiler, P. Cheema, S.W. Bahouth.
Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans.
Endocrinology, 145 (2004), pp. 2273-2282
[36.]
F. Hube, H. Hauner.
The two tumor necrosis factor receptors mediate opposite effects on differentiation and glucose metabolism in human adipocytes in primary culture.
Endocrinology, 141 (2000), pp. 2582-2588
[37.]
B.M. Spiegelman, G.S. Hotamisligil.
Through thick and thin: wasting, obesity, and TNF alpha.
Cell, 73 (1993), pp. 625-627
[38.]
J.M. Bruun, S.B. Pedersen, K. Kristensen, B. Richelsen.
Opposite regulation of interleukin- 8 and tumor necrosis factor-alpha by weight loss.
Obes Res, 10 (2002), pp. 499-506
[39.]
Y. Ito, H. Daitoku, A. Fukamizu.
Foxo1 increases pro-inflammatory gene expression by inducing C/EBPbeta in TNF-alpha-treated adipocytes.
Biochem Biophys Res Commun, 378 (2009), pp. 290-295
[40.]
L. Li, G. Renier.
Adipocyte-derived lipoprotein lipase induces macrophage activation and monocyte adhesion: role of fatty acids.
Obesity (Silver Spring), 15 (2007), pp. 2595-2604
[41.]
P.J. Simons, P.S. van den Pangaart, C.P. van Roomen, J.M. Aerts, L. Boon.
Cytokinemediated modulation of leptin and adiponectin secretion during in vitro adipogenesis: evidence that tumor necrosis factor-alpha- and interleukin-1beta-treated human preadipocytes are potent leptin producers.
Cytokine, 32 (2005), pp. 94-103
[42.]
S. Kaser, A. Kaser, A. Sandhofer, C.F. Ebenbichler, H. Tilg, J.R. Patsch.
Resistin messenger- RNA expression is increased by proinflammatory cytokines in vitro.
Biochem Biophys Res Commun, 309 (2003), pp. 286-290
[43.]
S. Bo, G. Ciccone, I. Baldi, R. Gambino, C. Mandrile, M. Durazzo, et al.
Plasma visfatin concentrations after a lifestyle intervention were directly associated with inflammatory markers.
Nutr Metab Cardiovasc Dis, 19 (2009), pp. 423-430
[44.]
A. Fukuhara, M. Matsuda, M. Nishizawa, K. Segawa, M. Tanaka, K. Kishimoto, et al.
Visfatin: a protein secreted by visceral fat that mimics the effects of insulin.
Science, 307 (2005), pp. 426-430
[45.]
H. Yamawaki, N. Hara, M. Okada, Y. Hara.
Visfatin causes endothelium-dependent relaxation in isolated blood vessels.
Biochem Biophys Res Commun, 383 (2009), pp. 503-508
[46.]
de Luis DA, Sagrado MG, Aller R, Conde R, Izaola O. Circulating visfatin in obese non-diabetic patients in relation to cardiovascular risk factors, insulin resistance, and adipocytokines: A contradictory piece of the puzzle. Nutrition. En prensa.DOI 101016/j.nut.2008.11.019.
[47.]
B. Telejko, M. Kuzmicki, A. Zonenberg, J. Szamatowicz, N. Wawrusiewicz-Kurylonek, A. Nikolajuk, et al.
Visfatin in gestational diabetes: serum level and mRNA expression in fat and placental tissue.
Diabetes Res Clin Pract, 84 (2009), pp. 68-75
[48.]
R. Adya, B.K. Tan, J. Chen, H.S. Randeva.
Pre-B cell colony enhancing factor (PBEF)/visfatin induces secretion of MCP-1 in human endothelial cells: role in visfatin-induced angiogenesis.
Atherosclerosis, 205 (2009), pp. 113-119
[49.]
X.J. Zeng, L.K. Zhang, H.X. Wang, L.Q. Lu, L.Q. Ma, C.S. Tang.
Apelin protects heart against ischemia/reperfusion injury in rat.
Peptides, 30 (2009), pp. 1144-1152
[50.]
H. Volkoff, J.L. Wyatt.
Apelin in goldfish (Carassius auratus): cloning, distribution and role in appetite regulation.
Peptides, 30 (2009), pp. 1434-1440
[51.]
N. Kloting, J. Berndt, S. Kralisch, P. Kovacs, M. Fasshauer, M.R. Schon, et al.
Vaspin gene expression in human adipose tissue: association with obesity and type 2 diabetes.
Biochem Biophys Res Commun, 339 (2006), pp. 430-436
[52.]
G. Aust, O. Richter, S. Rohm, C. Kerner, J. Hauss, N. Kloting, et al.
Vaspin serum concentrations in patients with carotid stenosis.
Atherosclerosis, 204 (2009), pp. 262-266
[53.]
S. Suleymanoglu, E. Tascilar, O. Pirgon, S. Tapan, C. Meral, A. Abaci.
Vaspin and its correlation with insulin sensitivity indices in obese children.
Diabetes Res Clin Pract, 84 (2009), pp. 325-328
[54.]
R.Z. Yang, M.J. Lee, H. Hu, J. Pray, H.B. Wu, B.C. Hansen, et al.
Identification of omentin as a novel depot-specific adipokine in human adipose tissue: possible role in modulating insulin action.
Am J Physiol Endocrinol Metab, 290 (2006), pp. E1253-E1261
[55.]
C.M. de Souza Batista, R.Z. Yang, M.J. Lee, N.M. Glynn, D.Z. Yu, J. Pray, et al.
Omentin plasma levels and gene expression are decreased in obesity.
Diabetes, 56 (2007), pp. 1655-1661
[56.]
S. Kralisch, S. Weise, G. Sommer, J. Lipfert, U. Lossner, M. Bluher, et al.
Interleukin-1beta induces the novel adipokine chemerin in adipocytes in vitro.
Regul Pept, 154 (2009), pp. 102-106
[57.]
M. Takahashi, Y. Takahashi, K. Takahashi, F.N. Zolotaryov, K.S. Hong, R. Kitazawa, et al.
Chemerin enhances insulin signaling and potentiates insulin-stimulated glucose uptake in 3T3-L1 adipocytes.
FEBS Lett, 582 (2008), pp. 573-578
[58.]
T. Nambu, H. Arai, Y. Komatsu, A. Yasoda, K. Moriyama, N. Kanamoto, et al.
Expression of the adrenomedullin gene in adipose tissue.
Regul Pept, 132 (2005), pp. 17-22
[59.]
K. Takahashi, K. Totsune, M. Sone, K. Kikuchi, O. Murakami.
Effects of adipokines on expression of adrenomedullin and endothelin-1 in cultured vascular endothelial cells.
[60.]
D. Guidolin, G. Albertin, R. Spinazzi, E. Sorato, A. Mascarin, D. Cavallo, et al.
Adrenomedullin stimulates angiogenic response in cultured human vascular endothelial cells: involvement of the vascular endothelial growth factor receptor 2.
Peptides, 29 (2008), pp. 2013-2023
[61.]
K. Kitagawa, B.S. Rosen, B.M. Spiegelman, G.E. Lienhard, L.I. Tanner.
Insulin stimulates the acute release of adipsin from 3T3-L1 adipocytes.
Biochim Biophys Acta, 1014 (1989), pp. 83-89
[62.]
R.T. White, D. Damm, N. Hancock, B.S. Rosen, B.B. Lowell, P. Usher, et al.
Human adipsin is identical to complement factor D and is expressed at high levels in adipose tissue.
J Biol Chem, 267 (1992), pp. 9210-9213
[63.]
I.S. Wood, B. Wang, P. Trayhurn.
IL-33, a recently identified interleukin-1 gene family member, is expressed in human adipocytes.
Biochem Biophys Res Commun, 384 (2009), pp. 105-109
[64.]
J.M. Bruun, A.S. Lihn, A.K. Madan, S.B. Pedersen, K.M. Schiott, J.N. Fain, et al.
Higher production of IL-8 in visceral vs. subcutaneous adipose tissue Implication of nonadipose cells in adipose tissue.
Am J Physiol Endocrinol Metab, 286 (2004), pp. E8-E13
[65.]
V. Rotter, I. Nagaev, U. Smith.
Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-alpha, overexpressed in human fat cells from insulin-resistant subjects.
J Biol Chem, 278 (2003), pp. 45777-45784
[66.]
H. Tilg, A.R. Moschen.
Insulin resistance, inflammation, and non-alcoholic fatty liver disease.
Trends Endocrinol Metab, 19 (2008), pp. 371-379
[67.]
G. Path, S.R. Bornstein, M. Gurniak, G.P. Chrousos, W.A. Scherbaum, H. Hauner.
Human breast adipocytes express interleukin-6 (IL-6) and its receptor system: increased IL- 6 production by beta-adrenergic activation and effects of IL-6 on adipocyte function.
J Clin Endocrinol Metab, 86 (2001), pp. 2281-2288
[68.]
M. Lehrke, U.C. Broedl, I.M. Biller-Friedmann, M. Vogeser, V. Henschel, K. Nassau, et al.
Serum concentrations of cortisol, interleukin 6, leptin and adiponectin predict stress induced insulin resistance in acute inflammatory reactions.
Crit Care, 12 (2008), pp. R157
[69.]
G.N. Luheshi, J.D. Gardner, D.A. Rushforth, A.S. Loudon, N.J. Rothwell.
Leptin actions on food intake and body temperature are mediated by IL-1.
Proc Natl Acad Sci U S A, 96 (1999), pp. 7047-7052
[70.]
J.H. Shin, D.W. Shin, M. Noh.
Interleukin-17A inhibits adipocyte differentiation in human mesenchymal stem cells and regulates pro-inflammatory responses in adipocytes.
Biochem Pharmacol, 77 (2009), pp. 1835-1844
[71.]
H. Tilg, A.R. Moschen.
Inflammatory mechanisms in the regulation of insulin resistance.
Mol Med, 14 (2008), pp. 222-231
[72.]
E. Maury, K. Ehala-Aleksejev, Y. Guiot, R. Detry, A. Vandenhooft, S.M. Brichard.
Adipokines oversecreted by omental adipose tissue in human obesity.
Am J Physiol Endocrinol Metab, 293 (2007), pp. E656-E665
[73.]
J.M. Bruun, S.B. Pedersen, B. Richelsen.
Regulation of interleukin 8 production and gene expression in human adipose tissue in vitro.
J Clin Endocrinol Metab, 86 (2001), pp. 1267-1273
[74.]
T. Skurk, H. Kolb, S. Muller-Scholze, K. Rohrig, H. Hauner, C. Herder.
The proatherogenic cytokine interleukin-18 is secreted by human adipocytes.
Eur J Endocrinol, 152 (2005), pp. 863-868
[75.]
I.S. Wood, B. Wang, J.R. Jenkins, P. Trayhurn.
The pro-inflammatory cytokine IL-18 is expressed in human adipose tissue and strongly upregulated by TNFalpha in human adipocytes.
Biochem Biophys Res Commun, 337 (2005), pp. 422-429
[76.]
K. Kang, S.M. Reilly, V. Karabacak, M.R. Gangl, K. Fitzgerald, B. Hatano, et al.
Adipocytederived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity.
Cell Metab, 7 (2008), pp. 485-495
[77.]
Y. Unno, T. Akuta, Y. Sakamoto, S. Horiuchi, T. Akaike.
Nitric oxide-induced downregulation of leptin production by 3T3-L1 adipocytes.
Nitric Oxide, 15 (2006), pp. 125-132
[78.]
S. Kapur, B. Marcotte, A. Marette.
Mechanism of adipose tissue iNOS induction in endotoxemia.
Am J Physiol, 276 (1999), pp. E635-E641
[79.]
H. Shi, M.V. Kokoeva, K. Inouye, I. Tzameli, H. Yin, J.S. Flier.
TLR4 links innate immunity and fatty acid-induced insulin resistance.
J Clin Invest, 116 (2006), pp. 3015-3025
[80.]
R.L. Bradley, F.F. Fisher, E. Maratos-Flier.
Dietary fatty acids differentially regulate production of TNF-alpha and IL-10 by murine 3T3-L1 adipocytes.
Obesity (Silver Spring), 16 (2008), pp. 938-944
[81.]
S. Chung, K. Lapoint, K. Martinez, A. Kennedy, M. Boysen Sandberg, M.K. McIntosh.
Preadipocytes mediate lipopolysaccharide-induced inflammation and insulin resistance in primary cultures of newly differentiated human adipocytes.
Endocrinology, 147 (2006), pp. 5340-5351
[82.]
K.M. Ajuwon, W. Banz, T.A. Winters.
Stimulation with Peptidoglycan induces interleukin 6 and TLR2 expression and a concomitant downregulation of expression of adiponectin receptors 1 and 2 in 3T3-L1 adipocytes.
J Inflamm (Lond), 6 (2009), pp. 8
[83.]
S.J. Creely, P.G. McTernan, C.M. Kusminski, M. Fisher, N.F. Da Silva, M. Khanolkar, et al.
Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes.
Am J Physiol Endocrinol Metab, 292 (2007), pp. E740-E747
[84.]
E. Gulden, S. Mollerus, J. Bruggemann, V. Burkart, C. Habich.
Heat shock protein 60 induces inflammatory mediators in mouse adipocytes.
FEBS Lett, 582 (2008), pp. 2731-2736
[85.]
T. Suganami, K. Tanimoto-Koyama, J. Nishida, M. Itoh, X. Yuan, S. Mizuarai, et al.
Role of the Toll-like receptor 4/NF-kappaB pathway in saturated fatty acid-induced inflammatory changes in the interaction between adipocytes and macrophages.
Arterioscler Thromb Vasc Biol, 27 (2007), pp. 84-91
[86.]
T. Skurk, C. Alberti-Huber, C. Herder, H. Hauner.
Relationship between adipocyte size and adipokine expression and secretion.
J Clin Endocrinol Metab, 92 (2007), pp. 1023-1033
[87.]
K.J. Waite, Z.E. Floyd, P. Arbour-Reily, J.M. Stephens.
Interferon-gamma-induced regulation of peroxisome proliferator-activated receptor gamma and STATs in adipocytes.
J Biol Chem, 276 (2001), pp. 7062-7068
[88.]
R.Z. Birk, M. Rubinstein.
IFN-alpha induces apoptosis of adipose tissue cells.
Biochem Biophys Res Commun, 345 (2006), pp. 669-674
[89.]
K.M. Ajuwon, S.K. Jacobi, J.L. Kuske, M.E. Spurlock.
Interleukin-6 and interleukin-15 are selectively regulated by lipopolysaccharide and interferon-gamma in primary pig adipocytes.
Am J Physiol Regul Integr Comp Physiol, 286 (2004), pp. R547-R553
[90.]
G. Vassaux, D. Gaillard, G. Ailhaud, R. Negrel.
Prostacyclin is a specific effector of adipose cell differentiation Its dual role as a cAMP- and Ca(2+)-elevating agent.
J Biol Chem, 267 (1992), pp. 11092-11097
[91.]
V.Z. Rocha, E.J. Folco, G. Sukhova, K. Shimizu, I. Gotsman, A.H. Vernon, et al.
Interferongamma, a Th1 cytokine, regulates fat inflammation: a role for adaptive immunity in obesity.
Circ Res, 103 (2008), pp. 467-476
[92.]
T. Skurk, C. Herder, I. Kraft, S. Muller-Scholze, H. Hauner, H. Kolb.
Production and release of macrophage migration inhibitory factor from human adipocytes.
Endocrinology, 146 (2005), pp. 1006-1011
[93.]
C. Herder, H. Hauner, K. Kempf, H. Kolb, T. Skurk.
Constitutive and regulated expression and secretion of interferon-gamma-inducible protein 10 (IP-10/CXCL10) in human adipocytes.
Int J Obes (Lond), 31 (2007), pp. 403-410
[94.]
I. Dahlman, M. Kaaman, T. Olsson, G.D. Tan, A.S. Bickerton, K. Wahlen, et al.
A unique role of monocyte chemoattractant protein 1 among chemokines in adipose tissue of obese subjects.
J Clin Endocrinol Metab, 90 (2005), pp. 5834-5840
[95.]
H. Wu, S. Ghosh, X.D. Perrard, L. Feng, G.E. García, J.L. Perrard, et al.
T-cell accumulation and regulated on activation, normal T cell expressed and secreted upregulation in adipose tissue in obesity.
Circulation, 115 (2007), pp. 1029-1038
[96.]
R.L. Hoo, W.S. Chow, M.H. Yau, A. Xu, A.W. Tso, H.F. Tse, et al.
Adiponectin mediates the suppressive effect of rosiglitazone on plasminogen activator inhibitor-1 production.
Arterioscler Thromb Vasc Biol, 27 (2007), pp. 2777-2782
[97.]
V. Varma, A. Yao-Borengasser, A.M. Bodles, N. Rasouli, B. Phanavanh, G.T. Nolen, et al.
Thrombospondin-1 is an adipokine associated with obesity, adipose inflammation, and insulin resistance.
Diabetes, 57 (2008), pp. 432-439
[98.]
M. Ditiatkovski, B.H. Toh, A. Bobik.
GM-CSF deficiency reduces macrophage PPARgamma expression and aggravates atherosclerosis in ApoE-deficient mice.
Arterioscler Thromb Vasc Biol, 26 (2006), pp. 2337-2344
[99.]
Y. Cao.
Angiogenesis modulates adipogenesis and obesity.
J Clin Invest, 117 (2007), pp. 2362-2368
[100.]
S.B. Wheatcroft, M.T. Kearney, A.M. Shah, V.A. Ezzat, J.R. Miell, M. Modo, et al.
IGFbinding protein-2 protects against the development of obesity and insulin resistance.
Diabetes, 56 (2007), pp. 285-294
[101.]
S.S. Chan, S.M. Twigg, S.M. Firth, R.C. Baxter.
Insulin-like growth factor binding protein- 3 leads to insulin resistance in adipocytes.
J Clin Endocrinol Metab, 90 (2005), pp. 6588-6595
[102.]
E. van Exel, J. Gussekloo, A.J. de Craen, M. Frolich, A. Bootsma-Van Der Wiel, R.G. Westendorp.
Low production capacity of interleukin-10 associates with the metabolic syndrome and type 2 diabetes : the Leiden 85-Plus Study.
Diabetes, 51 (2002), pp. 1088-1092
[103.]
A. Bertola, S. Bonnafous, M. Cormont, R. Anty, J.F. Tanti, A. Tran, et al.
Hepatocyte growth factor induces glucose uptake in 3T3-L1 adipocytes through A Gab1/phosphatidylinositol 3-kinase/Glut4 pathway.
J Biol Chem, 282 (2007), pp. 10325-10332
[104.]
C.E. Juge-Aubry, E. Somm, R. Chicheportiche, D. Burger, A. Pernin, B. Cuenod-Pittet, et al.
Regulatory effects of interleukin (IL)-1, interferon-beta, and IL-4 on the production of IL-1 receptor antagonist by human adipose tissue.
J Clin Endocrinol Metab, 89 (2004), pp. 2652-2658
[105.]
B. Álvarez, N. Carbo, J. López-Soriano, R.H. Drivdahl, S. Busquets, F.J. López-Soriano, et al.
Effects of interleukin-15 (IL-15) on adipose tissue mass in rodent obesity models: evidence for direct IL-15 action on adipose tissue.
Biochim Biophys Acta, 1570 (2002), pp. 33-37
[106.]
J. Rehman, R.V. Considine, J.E. Bovenkerk, J. Li, C.A. Slavens, R.M. Jones, et al.
Obesity is associated with increased levels of circulating hepatocyte growth factor.
J Am Coll Cardiol, 41 (2003), pp. 1408-1413
[107.]
M.R. Peeraully, J.R. Jenkins, P. Trayhurn.
NGF gene expression and secretion in white adipose tissue: regulation in 3T3-L1 adipocytes by hormones and inflammatory cytokines.
Am J Physiol Endocrinol Metab, 287 (2004), pp. E331-E339
Copyright © 2010. Sociedad Colombiana de Cardiología y Cirugía Cardiovascular
Descargar PDF
Opciones de artículo