metricas
covid
Buscar en
Revista Española de Cirugía Ortopédica y Traumatología
Toda la web
Inicio Revista Española de Cirugía Ortopédica y Traumatología Cirugía reconstructiva del aparato locomotor, nuevas técnicas y opciones terap...
Información de la revista
Vol. 54. Núm. S1.
Proteína osteogénica tipo 1
Páginas 31-38 (mayo 2010)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 54. Núm. S1.
Proteína osteogénica tipo 1
Páginas 31-38 (mayo 2010)
Proteína Osteogénica Tipo 1
Acceso a texto completo
Cirugía reconstructiva del aparato locomotor, nuevas técnicas y opciones terapéuticas
Reconstructive surgery of the locomotor apparatus: new techniques and therapeutic options
Visitas
3115
X. Flores Sánchez
Autor para correspondencia
Xavierfloress@gmail.com

Autor para correspondencia.
, E. Guerra Farfan, P. Corona Pérez-Cardona, C. Amat Mateu, J. Nardi Vilardaga
Unidad de Patología Séptica y Cirugía de Reconstrucción del Aparato Locomotor, Hospital Universitario Vall d’Hebron, Barcelona, España
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas
Resumen

La aplicación de criterios tumorales en el tratamiento quirúrgico secuencial de las osteítis crónicas y seudoartrosis sépticas en forma de resecciones segmentarias origina amplios defectos óseos. Una vez controlado el proceso séptico, en un entorno estable y vascularizado, se procede a la reconstrucción en dichas lesiones mediante transporte óseo basado en la osteogénesis a distracción. A pesar de los buenos resultados obtenidos, los periodos de fijación externa y de curación son muy largos, 2,4 meses por centímetro reconstruido. Estos prolongados tratamientos motivan que haya un elevado número de complicaciones.

Los avances en ingeniería tisular y regeneración ósea contribuyen con nuevas técnicas y opciones terapéuticas. La estimulación de la formación de hueso nuevo en la zona de distracción o en el punto de atraque del fragmento transportado puede minimizar las complicaciones asociadas a la larga duración del procedimiento.

La utilización de un osteoinductor como BMP-7 origina en la práctica un aumento de la formación ósea y el nuevo hueso puede tener incrementadas sus propiedades biomecánicas.

Palabras clave:
Defecto óseo
Osteogénesis a distracción
Seudoartrosis séptica
Osteítis crónica
BMP
Ingeniería tisular
Reconstrucción esquelética
Transporte óseo
Abstract

The application of oncologic criteria in the sequential surgical treatment of chronic osteomyelitis foci and septic pseudarthrosis, through segmental resections, produces extensive bone defects. Once the septic process is under control, in a stable and well vascularized atmosphere, we perform reconstruction of intercalary defects through bone transportation based on distraction osteogenesis. Despite the good results, the healing index and the time on ex-fix are very long, about 10 weeks per centimeter rebuilt. These prolonged treatments lead to a large number of complications.

Advances in tissue engineering and bone regeneration have led to new techniques and therapeutic options. Stimulation of new bone formation in the distraction area or in the “docking-site” can minimize the complications associated with the length of time required by the procedure. The use of an osteoinducer, such as BMP-7, increases new bone formation and may enhance its biomechanical properties.

Keywords:
Bone defect
Distraction osteogenesis
Septic pseudoarthrosis
Chronic osteomyelitis
Bone morphogenetic protein
Tissue engineering
Skeletal reconstruction
Bone transport
El Texto completo está disponible en PDF
Bibliografía
[1.]
A. Mahendra, A.D. Maclean.
Available biological treatments for complex non-unions.
Injury, Int J Care Injured, 38 (2007), pp. S7-S12
[2.]
P.V. Giannoudis, S. Psarakis, N.K. Kanakaris, H.C. Pape.
Biological enhancement of bone healing with Bone Morphogenetic Protein-7 at the clinical setting of pelvic girdle non-unions.
Injury, Int J Care Injured, 38 (2007), pp. S43-S48
[3.]
P.V. Giannoudis, C. Tzioupis, T. Almalki, R. Buckley.
Fracture healing in osteoporotic fractures: is it really different? A basic science perspective.
A basic science perspective. Injury, Int J Care Injured, 38 (2007), pp. S90-S99
[4.]
N.K. Kanakaris, C. Paliobeis, N. Manidakis, P.V. Giannoudis.
Biological enhancement of tibial diaphyseal aseptic non-unions: the efficacy of autologous bone grafting, BMPs and reaming by-products.
Injury, Int J Care Injured, 38 (2007), pp. S65-S75
[5.]
G. Stylios, T. Wan, P. Giannoudis.
Present status and future potential of enhancing bone healing using nanotechnology.
Injury, Int J Care Injured, 38 (2007), pp. S63-S74
[6.]
E. Tsiridis, N. Upadhyay, P. Giannoudis.
Molecular aspects of fracture healing: Which are the important molecules?.
Injury, Int J Care Injured, 38 (2007), pp. S11-S25
[7.]
P.V. Giannoudis, T.A. Einhorn, D. Marsh.
Fracture healing: a harmony of optimal biology and optimal fixation?.
Injury, Int J Care Injured, 38 (2007), pp. S1-S2
[8.]
P.V. Giannoudis, T.A. Einhorn, G. Schmidmaier, D. Marsh.
The diamond concept —open questions.
Injury, Int J Care Injured, 39 (2008), pp. S5-S8
[9.]
P.V. Giannoudis, H.C. Pape.
Trauma and immune reactivity: too much, or too little immune response?.
Injury, Int J Care Injured, 38 (2007), pp. 1333-1335
[10.]
K.A. Jacobsen, Z.S. Al-Aql, C. Wan, J.L. Fitch, S.N. Stapleton, Z.D. Mason, et al.
Bone formation during distraction osteogenesis is dependent on both VEGFR1 and VEGFR2 signaling.
J Bone Miner Res, 23 (2008), pp. 596-609
[11.]
Y.Q. Wang, J.M. Luk, A.C. Chu, K. Ikeda, K. Man, K. Kaneda, et al.
TNP-470 blockage of VEGF synthesis is dependent on MAPK/COX-2 signaling pathway in PDGF-BB-activated hepatic stellate cells.
Biochem Biophys Res Commun, 341 (2006), pp. 239-244
[12.]
M.R. Urist.
Bone: formation by autoinduction.
Science, 150 (1965), pp. 893-899
[13.]
M.R. Urist, A. Mikulski, A. Lietze.
Solubilized and insolubilized bone morphogenetic protein.
Proc Natl Acad Sci U S A, 76 (1979), pp. 1828-1832
[14.]
I. Pountos, T. Georgouli, T.J. Blokhuis, H.C. Pape, P.V. Giannoudis.
Pharmacological agents and impairment of fracture healing: what is the evidence?.
Injury, Int J Care Injured, 39 (2008), pp. 384-394
[15.]
D. Gupta, S.M. Tuli.
Osteoinductivity of partially decalcied alloimplants in healing of large osteoperiosteal defects.
Acta Orthop Scand, 53 (1982), pp. 857-865
[16.]
T.A. Einhorn, J.M. Lane, A.H. Burstein, C.R. Kopman, V.J. Vigorita.
The healing of segmental bone defects induced by demineralised Bone matrix.
J Bone Joint Surg (Am), 66 (1984), pp. A274-A279
[17.]
T.A. Einhorn.
Bone regeneration and repair: biology and clinical applications.
J Bone Joint Surg (Am), 88 (2006), pp. A469-A470
[18.]
J.E. Feighan, D. Davy, A.B. Prewett, S. Stevenson.
Induction of bone by a demineralized bone matrix gel: a study in a rat femoral defect model.
J Orthop Res, 13 (1995), pp. 881-891
[19.]
E.A. Wang, V. Rosen, J.S. D’Alessandro, M. Bauduy, P. Cordes, T. Harada, et al.
Recombinant human bone morphogenetic protein induces bone formation.
Proc Natl Acad Sci U S A, 87 (1990), pp. 2220-2224
[20.]
R.G. Hammonds, R. Schwall, A. Dudley, L. Berkemeier, C. Lai, J. Lee, et al.
Bone inducing activity of mature BMP-2b produced from a hybrid BMP-2a/2b precursor.
Mol Endocrinol, 5 (1991), pp. 149-155
[21.]
X. Chen, A. Schmidt, D.T. Tsukayama, C.A. Bourgeault, W.D. Lew.
Recombinant human osteogenis protein-1 induces bone formation in a chronically infected, internally stabilised segmental defect in the rat femur.
J Bone Joint Surg (Am), 88 (2006), pp. A1510-A1523
[22.]
E. Özkaynak, D.C. Rueger, E.A. Drier, C. Corbett, R.J. Ridge, T.K. Sampath, et al.
OP-1 cDNA encodes an osteogenic protein in the TGF-beta family.
[23.]
J.M. Wozney.
The bone morphogenetic protein family and osteogenesis.
Mol Reprod Dev, 32 (1992), pp. 160-167
[24.]
R.G.T. Geesink, N.H.M. Hoefnagels, S.K. Bulstra.
Osteogenic activity of OP-1 bone morphogenetic protein (BMP-7) in a human fibular defect.
J Bone Joint Surg (Br), 81 (1999), pp. B710-B718
[25.]
S. Govender, C. Csimma, H.K. Genant, A. Valentin-Opran, Y. Amit, R. Arbel, BMP-2 Evaluation in Surgery for Tibial Trauma (BESTT) Study Group, et al.
Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients.
J Bone Joint Surg (Am), 84 (2002), pp. A2123-A2134
[26.]
McKee MD. The effect of human recombinant bone morphogenis protein (rhBMP-7) on the healing of open tibial shaft fractures: results of a multicentre, prospective, randomised clinical trial. OTA 2002 Annual meeting, Toronto, Ontario Canada, October 2002. Paper 45.
[27.]
M.F. Swiontkowski, H.T. Aro, S. Donell, J.L. Esterhai, J. Goulet, A. Jones, et al.
Recombinant human bone morphogenic protein-2 in open tibial fractures.
J Bone Joint Surg (Am), 88 (2006), pp. A1258-A1265
[28.]
R. Dimitriou, Z. Dahabreh, E. Katsoulis, S.J. Matthews, T. Branfoot, P.V. Giannoudis, et al.
Application of recombinant BMP-7 on persistent upper and lower limb non-unions.
Injury, Int J Care Injured, 36 (2005), pp. S51-S59
[29.]
A.H. Reddi.
Cell biology and biochemistry of endochondral bone development.
Coll Relat Res, 1 (1981), pp. 209-226
[30.]
P.V. Giannoudis, C.H. Tzioupis.
Clinical applications of BMP-7. The UK perspective.
Injury, Int J Care Injured, 36 (2005), pp. S47-S50
[31.]
L.N. Ramoshebi, U. Ripamonti.
Osteogenic protein-1, a bone morphogenetic protein, induces angiogenesis in the chick chorioallantoic membrane and syner-gizes with basic fibroblast growth factor and transforming growth factor-beta1.
[32.]
T.L. Chen, R.L. Bates, A. Dudley, R.G. Hammonds, E.P. Amento.
Bone morphogenetic protein-2b stimulation of growth and osteogenic phenotypes in rat osteoblast-like cells: comparison with TGF-beta 1.
J Bone Miner Res, 6 (1991), pp. 1387-1393
[33.]
T. Makino, D.J. Hak, S.J. Hazelwood, S. Curtiss, A.H. Reddi.
Prevention of atrophic nonunion development by recombinant human bone morphogenetic protein-7.
J Orthop Res, 23 (2005), pp. 632-638
[34.]
Y. Mizumoto, T. Mosely, M. Drews, V.N. Cooper III, H. Reddi.
Acceleration of regenerate ossification during distraction osteogenesis with recombinant human bone morphogenetic protein-7.
J Bone Joint Surg (Am), 85 (2003), pp. A124-A130
[35.]
F. Sailhan, F. Chotel, A. Chousta, E. Viguier, G. Boivin.
Unexpected absence of effect of rhBMO-7 on distraction osteogenesis.
Clin Orthop Relat Res, 457 (2006), pp. 227-234
[36.]
A.S. Boyce, G. Reveal, K. Scheid, D. Kaehr, D. Maar, M. Watts, et al.
Canine investigation of rhBMP-2, autogenous bone graft, and rhBMP-2 with autogenous bone graft for the healing of a large segmental tibial defect.
J Orthop Trauma, 23 (2009), pp. 685-692
[37.]
R. Knutzen, J.E. Wergedal, T.K. Sampath, D.J. Baylink, S. Mohan.
Osteogenic protein-1 stimulates proliferation and differentiation of human bone cells in vitro.
Biochem Biophys Res Commun, 194 (1993), pp. 1352-1358
[38.]
T.A. Hentunen, P.T. Lakkakorpi, J. Tuukkanen, P.P. Lehenkari, T.K. Sampath, H.K. Väänänen.
Effects of recombinant human osteogenic protein-1 on the differentiation of osteoclast-like cells and bone resorption.
Biochem Biophys Res Commun, 209 (1995), pp. 433-443
[39.]
S.D. Cook, R.L. Barrack, L.P. Patron, S.L. Salkeld.
Osteogenic protein-1 in knee arthritis and arthroplasty.
Clin Orthop Relat Res, 428 (2004), pp. 140-145
[40.]
S.D. Cook, J.E. Dalton, E.H. Tan, T.S. Whitecloud, D.C. Rueger.
In vivo evaluation of recombinant human osteogenic protein (rhOP-1) implants as a bone graft substitute for spinal fusions.
[41.]
T.K. Sampath, J.C. Maliakal, P.V. Hauschka, W.K. Jones, H. Sasak, R.F. Tucker, et al.
Recombinant human osteogenic protein-1 (hOP-1) induces new bone formation in vivo with a specic activity comparable with natural bovine osteogenic protein and stimulates osteoblast proliferation and differentiation in vitro.
J Biol Chem, 267 (1992), pp. 20352-20362
[42.]
S. Vukicevic, A. Stavljenic, M. Pecina.
Discovery and clinical applications of bone morphogenetic proteins.
Eur J Clin Chem Biochem, 33 (1995), pp. 661-671
[43.]
D.A. Grande, C. Halberstadt, G. Naughton, R. Schwartz, R. Manji.
Evaluation of matrix scaffolds for tissue engineering of articular cartilage grafts.
[44.]
Y. Shigeyama, J.A. D’Errico, R. Stone, M.J. Somerman.
Commercially-prepared allograft material has biological activity in vitro.
J Periodontol, 66 (1995), pp. 478-487
[45.]
G.E. Friedlaender, C.R. Perry, J.D. Cole, S.D. Cook, G. Cierny, G.F. Muschler, et al.
Osteogenic Protein-1 (Bone Morphogenetic Protein-7) in the tibial nonunions. A prospective, randomised clinical trial comparing RhOP-1 with fresh bone autograft.
J Bone Joint Surg (Am), 83 (2001), pp. S151-S158
[46.]
L. Fabeck, D. Ghafil, M. Gerroudj, R. Baillon, Ph. Delincé.
Bone morphogenetic protein 7 in the treatment of congenital pseudarthrosis of the tibia.
J Bone Joint Surg (Br), 88 (2006), pp. B116-B118
[47.]
F.Y.-I. Lee, S.M. Sinicropi, F.S. Lee, M.G. Vitale, D.P. Roye, I.H. Choi.
Treatment of congenital pseudarthrosis of the tibia with recombinant human bone morphogenetic protein-7 (rhBMP-7). A report of five cases.
J Bone Joint Surg (Am), 88 (2006), pp. A627-A633
[48.]
I. Ekrol, C. Hajducka, Ch. Court-Brown, M. McQueen.
A comparison of RhBMP-7 (OP-1) and autogenous graft for metaphyseal defects after osteotomy of the distal radius Injury.
Int J Care Injured, 39 (2008), pp. S73-S82
[49.]
K. Abdollahi, P.J. Kumar, L. Shepherd, M.J. Patzakis.
Estimation of defect volume in segmental defects of the tibia and femur.
[50.]
E.D. Arrington, W.J. Smith, H.G. Chambers, A.L. Bucknell, N.A. Davino.
Complications of iliac crest bone graft harvesting.
Clin Orthop Relat Res, 329 (1996), pp. 300-309
[51.]
J.C. Fernyhough, J.J. Schimandle, M.C. Weigel, C.C. Edwards, A.M. Levine.
Chronic donor site pain complicating bone graft harvesting from the posterior iliac crest for spinal fusion.
[52.]
L.T. Kurz, S.R. Garn, R.E. Booth.
Harvesting autogenous iliac bone grafts: a review of complications and techniques.
Spine, 14 (1989), pp. 1324-1331
[53.]
R.C. Sasso, J.I. Williams, N. Dimasi, P.R. Meyer Jr..
Postoperative drains at the donor sites of iliac-crest bone grafts. A prospective, randomized study of morbidity at the donor site in patients who had a traumatic injury of the spine.
J Bone Joint Surg (Am), 80 (1998), pp. A631-A635
[54.]
R.A. Hayda, M.J. Bosse.
Moderators’ summary: management of segmental bone defects.
J Am Acad Orthop Surg, 14Suppl (2006), pp. S142-S144
[55.]
Z.S. Ai-Aql, A.S. Alagl, D.T. Graves, L.C. Gerstenfeld, T.A. Einhorn.
Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis.
J Dent Res, 87 (2008), pp. 107-118
[56.]
P.N. Soucacos, E.O. Johnson, G. Babis.
An update on recent advances in bone regeneration.
Injury, Int J Care Injured, 39 (2008), pp. S1-S4
[57.]
C.T. Laurencin, T.A. Einhorn, K. Lyons.
Fracture repair: challenges and opportunities.
J Bone Joint Surg (Am), 90 (2008), pp. 1-2
[58.]
T. Sakou.
Bone morphogenetic proteins: from basic clinical studies to clinical approaches.
Copyright © 2010. Sociedad Española de Cirugia Ortopédica y Traumatología (SECOT)
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos