metricas
covid
Buscar en
Revista Española de Geriatría y Gerontología
Toda la web
Inicio Revista Española de Geriatría y Gerontología Efecto de dos antioxidantes en la supervivencia, las actividades neurológicas y...
Información de la revista
Vol. 40. Núm. 4.
Páginas 235-242 (agosto 2005)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 40. Núm. 4.
Páginas 235-242 (agosto 2005)
Originales
Acceso a texto completo
Efecto de dos antioxidantes en la supervivencia, las actividades neurológicas y la función mitocondrial de ratones senescentes
Effect of two antioxidants on survival, neurological activities and mitochondrial function in senescent mice
Visitas
4607
A. Navarroa,
Autor para correspondencia
ana.navarro@uca.es

Correspondencia: Prof. A. Navarro. Departamento de Bioquímica y Biología Molecular. Facultad de Medicina. P.° Fragela, 9. 11003 Cádiz. España.
, M.J. Bándeza, C. Gómeza, H. Gonzáleza, N. Escuderoa, J.C. García-Ortiza, J.F. Carrióna, M.J. Sánchez-Pinoa, J.M. López-Ceperob
a Departamento de Bioquímica y Biología Molecular. Facultad de Medicina. Universidad de Cádiz. Cádiz. España
b Departamento de Histología. Facultad de Medicina. Universidad de Cádiz. Cádiz. España
Este artículo ha recibido
Información del artículo
Resumen
Objetivos

Valorar la influencia de tratamientos crónicos con los antioxidantes vitamina E y tioprolina en: a) la supervivencia de ratones; b) la actividad neurológica de los animales envejecidos, y c) la disminución de actividades enzimáticas mitocondriales y el daño oxidativo mitocondrial asociados al proceso de envejecimiento.

Material y método

Los ratones recibieron desde la semana 28 de vida, y durante toda su vida, una suplementación en la dieta de vitamina E (5 g de acetato de dl-α-tocoferol/kg de comida) o de tioprolina (2 g de l-4-ácido tiazolidín carboxílico/kg de comida). Para evaluar la actividad neurológica los ratones se sometieron cada 2 semanas a 2 pruebas de comportamiento. En mitocondrias aisladas de cerebro se determinó el daño oxidativo, medido como proteínas o lípidos oxidados, así como por disminución de las actividades enzimáticas NADH-citocromo c reductasa, succinatocitocromo c reductasa, citocromo oxidasa y óxido nítrico sintasa mitocondrial (mtNOS).

Resultados

La expectativa de vida de los ratones macho aumentó después de la suplementación con vitamina E en un 34-34% (vida media y longevidad máxima, respectivamente), y después de la suplementación con tioprolina en un 33-24%. La vitamina E y la tioprolina fueron efectivas en la disminución de los marcadores mitocondriales de daño oxidativo (TBARS y carbonilos proteínicos), y en el retardo de la disminución de las actividades enzimáticas y neurológicas asociadas al envejecimiento.

Conclusiones

Las actividades enzimáticas de mtNOS, NADH deshidrogenasa y citocromo oxidasa pueden usarse como indicadores de tratamientos efectivos del déficit neurológico asociado al envejecimiento.

Palabras clave:
Envejecimiento
Estrés oxidativo
Actividad neurológica
Vitamina E
Tioprolina
Mitocondria
MtNOS
NADH deshidrogenasa
Citocromo oxidasa
Abstract
Aims

The aim of this study was to evaluate the influence of chronic treatments with the antioxidants vitamin E and thioproline on: 1) survival in mice; 2) the neurological activities of aged animals; and 3) the decreased mitochondrial enzymatic activities and oxidative damage associated with the ageing process.

Material and method

Mice received food upplemented with vitamin E (5 g dl-α-tocopherol acetate/kg of food) or with thioproline l-4-thioproline/kg (2 g l-4-thiazolidine carboxylic acid/kg of food) from 28 weeks of age and during their entire lifespan. To evaluate neurological activity the animals underwent two behavioural tests every 15 days from weeks 28 to 76 of age. Oxidative damage to isolated brain mitochondria was evaluated by determining protein and lipid oxidation products and mitochondrial enzyme activities: NADH-cytochrome c reductase, succinate-cytochrome c reductase, cytochrome oxidase, and mitochondrial nitric oxide synthase (mtNOS).

Results

Lifespan was increased in male mice by 34-34% (mean and maximal lifespan, respectively) after supplementation with 5 g vitamin E/kg food and by 33-24% (mean and maximal lifespan, respectively) after supplementation with 2 g thioproline/kg food. Vitamin E and thioproline were effective in decreasing the level of markers of oxidative damage (TBARS and protein carbonyls) in isolated mitochondria and in delaying the decreases in mitochondrial enzyme activities and the loss of neurological function associated with ageing.

Conclusions

The activities of mtNOS, NADH dehydrogenase and cytochrome oxidase can be used as indicators of the effectiveness of treatments for age-dependent neurological impairment.

Key words:
Ageing
Oxidative stress
Neurological activity
Vitamin E
Thioproline
Mitochondria
MtNOS
NADH-dehydrogenase
Cytochrome oxidase
El Texto completo está disponible en PDF
Bibliografía
[1.]
M.J. Forster, A. Dubey, K.M. Dawson, W.A. Stutts, H. Lal, R.S. Sohal.
Age-related losses of cognitive function and motor skills in mice are associated with oxidative protein damage in the brain.
Proc Natl Acad Sci USA, 93 (1996), pp. 4765-4769
[2.]
A. Navarro, M.J. Sánchez del Pino, C. Gómez, J.L. Peralta, A. Boveris.
Behavioral dysfunction, brain oxidative stress, and impaired mitochondrial electron transfer in aging mice.
Am J Physiol Regul Integr Comp Physiol, 282 (2002), pp. R985-R992
[3.]
R. Gershman, D.L. Gilbert, S.W. Nye, P. Dwyer, W.O. Fenn.
Oxygen poisoning and x-irradiation: a mechanism in common.
Science, 119 (1954), pp. 623-626
[4.]
D. Harman.
The biologic clock: the mitochondria?.
J Am Geriatr Soc, 20 (1972), pp. 145-147
[5.]
J. Miquel, J. Fleming.
Theoretical and experimental support for an «oxygen radical injury» hypothesis of cell aging.
Free radicals, aging and degenerative diseases, pp. 51-74
[6.]
R.S. Sohal.
The free radical hypothesis of aging: an appraisal of the current status.
Aging (Milano), 5 (1993), pp. 3-17
[7.]
B. Chance, H. Sies, A. Boveris.
Hydroperoxide metabolism in mammalian organs.
Physiol Rev, 59 (1979), pp. 527-605
[8.]
A. Boveris, E. Cadenas.
Mitochondrial production of superoxide anions and its relationship to the antimycin insensitive respiration.
FEBS Lett, 54 (1975), pp. 311-314
[9.]
A. Boveris, E. Cadenas, A.O. Stoppani.
Role of ubiquinone in the mitochondrial generation of hydrogen peroxide.
Biochem J, 156 (1976), pp. 435-444
[10.]
E. Cadenas, A. Boveris.
Enhancement of hydrogen peroxide formation by protophores and ionophores in antimycin-supplemented mitochondria.
Biochem J, 188 (1980), pp. 31-37
[11.]
J.F. Turrens, A. Boveris.
Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria.
Biochem J, 191 (1980), pp. 421-427
[12.]
A. Boveris, E. Cadenas.
Mitochondrial production of hydrogen peroxide regulation by nitric oxide and the role of ubisemiquinone.
IUBMB Life, 50 (2000), pp. 245-250
[13.]
D. Han, F. Antunes, R. Canali, D. Rettori, E. Cadenas.
Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol.
J Biol Chem, 278 (2003), pp. 5557-5563
[14.]
P. Ghafourifar, C. Richter.
Nitric oxide synthase activity in mitochondria.
FEBS Lett, 418 (1997), pp. 291-296
[15.]
C. Giulivi, J.J. Poderoso, A. Boveris.
Production of nitric oxide by mitochondria.
J Biol Chem, 273 (1998), pp. 11038-11043
[16.]
S.L. Elfering, T.M. Sarkela, C. Giulivi.
Biochemistry of mitochondrial nitric-oxide synthase.
J Biol Chem, 277 (2002), pp. 38079-38086
[17.]
A. Tatoyan, C. Giulivi.
Purification and characterization of a nitric-oxide synthase from rat liver mitochondria.
J Biol Chem, 273 (1998), pp. 11044-11048
[18.]
A. Boveris, S.L. Arnaiz, J. Bustamante, et al.
Pharmacological regulation of mitochondrial nitric oxide synthase.
Methods Enzymol, 359 (2002), pp. 328-339
[19.]
J.J. Poderoso, C. Lisdero, F. Schopfer, et al.
The regulation of mitochondrial oxygen uptake by redox reactions involving nitric oxide and ubiquinol.
J Biol Chem, 274 (1999), pp. 37709-37716
[20.]
R. Radi.
Peroxynitrite reactions and diffusion in biology.
Chem Res Toxicol, 11 (1998), pp. 720-721
[21.]
R. Radi, J.F. Turrens, L.Y. Chang, K.M. Bush, J.D. Crapo, B.A. Freeman.
Detection of catalase in rat heart mitochondria.
J Biol Chem, 266 (1991), pp. 22028-22034
[22.]
L.B. Valdez, S. Álvarez, S.L. Arnaiz, et al.
Reactions of peroxynitrite in the mitochondrial matrix.
Free Radic Biol Med, 29 (2000), pp. 349-356
[23.]
I. Trounce, E. Byrne, S. Marzuki.
Decline in skeletal muscle mitochondrial respiratory chain function: possible factor in ageing.
Lancet, 1 (1989), pp. 637-639
[24.]
G. Benzi, O. Pastoris, F. Marzatico, R.F. Villa, F. Dagani, D. Curti.
The mitochondrial electron transfer alteration as a factor involved in the brain aging.
Neurobiol Aging, 13 (1992), pp. 361-368
[25.]
M. Hayakawa, S. Sugiyama, K. Hattori, M. Takasawa, T. Ozawa.
Age-associated damage in mitochondrial DNA in human hearts.
Mol Cell Biochem, 119 (1993), pp. 95-103
[26.]
R.S. Sohal, S. Agarwal, M. Candas, M.J. Forster, H. Lal.
Effect of age and caloric restriction on DNA oxidative damage in different tissues of C57BL/6 mice.
Mech Ageing Dev, 76 (1994), pp. 215-224
[27.]
M. Martínez, M.L. Ferrándiz, E. De Juan, J. Miquel.
Age-related changes in glutathione and lipid peroxide content in mouse synaptic mitochondria: relationship to cytochrome c oxidase decline.
Neurosci Lett, 170 (1994), pp. 121-124
[28.]
J. Sastre, A. Millán, A. García, et al.
A Ginkgo biloba extract (EGb 761) prevents mitochondrial aging by protecting against oxidative stress.
Free Radic Biol Med, 24 (1998), pp. 298-304
[29.]
H. Nakahara, T. Kanno, Y. Inai, et al.
Mitochondrial dysfunction in the senescence accelerated mouse (SAM).
Free Radic Biol Med, 24 (1998), pp. 85-92
[30.]
K.B. Beckman, B.N. Ames.
Mitochondrial aging: open questions.
Ann N Y Acad Sci, 854 (1998), pp. 118-127
[31.]
J. Vina, J. Sastre, F. Pallardó, C. Borràs.
Mitochondrial theory of aging: importance to explain why females live longer than males.
Antioxid Redox Signal, 5 (2003), pp. 549-556
[32.]
A. Chomyn, G. Attardi.
MtDNA mutations in aging and apoptosis.
Biochem Biophys Res Commun, 304 (2003), pp. 519-529
[33.]
K.B. Beckman, B.N. Ames.
The free radical theory of aging matures.
Physiol Rev, 78 (1998), pp. 547-581
[34.]
K.U. Ingold, A.C. Webb, D. Witter, G.W. Burton, T.A. Metcalfe, D.P. Muller.
Vitamin E remains the major lipid-soluble, chain-breaking antioxidant in human plasma even in individuals suffering severe vitamin E deficiency.
Arch Biochem Biophys, 259 (1987), pp. 224-225
[35.]
H. Sies.
Carotenoids and tocopherols as antioxidants and singlet oxygen quenchers.
J Nutr Sci Vitaminol (Tokyo), Spec No (1992), pp. 27-33
[36.]
L. Packer, S.U. Weber, G. Rimbach.
Molecular aspects of alpha-tocotrienol antioxidant action and cell signalling.
J Nutr, 131 (2001), pp. S369-S373
[37.]
A. Azzi, R. Ricciarelli, J.M. Zingg.
Non-antioxidant molecular functions of alphatocopherol (vitamin E).
FEBS Lett, 519 (2002), pp. 8-10
[38.]
J.M. Zingg, A. Azzi.
Non-antioxidant activities of vitamin E.
Curr Med Chem, 11 (2004), pp. 1113-1133
[39.]
A.A. Morley, K.J. Trainor.
Lack of an effect of vitamin E on lifespan of mice.
Biogerontology, 2 (2001), pp. 109-112
[40.]
J.F. Reckelhoff, V. Kanji, L.C. Racusen, et al.
Vitamin E ameliorates enhanced renal lipid peroxidation and accumulation of F2-isoprostanes in aging kidneys.
Am J Physiol, 274 (1998), pp. R767-R774
[41.]
A.D. Blackett, D.A. Hall.
Vitamin E—Its significance in mouse ageing.
Age Ageing, 10 (1981), pp. 191-195
[42.]
J. Miquel, J. Fleming, A.C. Economos.
Antioxidants, metabolic rate and aging in Drosophila.
Arch Gerontol Geriatr, 1 (1982), pp. 159-165
[43.]
A. Navarro, C. Gómez, J.M. López-Cepero, A. Boveris.
Beneficial effects of moderate exercise on mice aging: survival, behavior, oxidative stress, and mitochondrial electron transfer.
Am J Physiol Regul Integr Comp Physiol, 286 (2004), pp. R505-R511
[44.]
J. Miquel, M. Blasco.
A simple technique for evaluation of vitality loss in aging mice, by testing their muscular coordination and vigor.
Exp Gerontol, 13 (1978), pp. 389-396
[45.]
M. De la Fuente, M. Minano, V. Manuel, et al.
Relation between exploratory activity and immune function in aged mice: a preliminary study.
Mech Ageing Dev, 102 (1998), pp. 263-277
[46.]
A. Navarro, A. Boveris.
Rat brain and liver mitochondria develop oxidative stress and lose enzymatic activities on aging.
Am J Physiol Regul Integr Comp Physiol, 287 (2004), pp. R1244-R1249
[47.]
C.G. Fraga, B.E. Leibovitz, A.L. Tappel.
Lipid peroxidation measured as thiobarbituric acid-reactive substances in tissue slices: characterization and comparison with homogenates and microsomes.
Free Radic Biol Med, 4 (1988), pp. 155-161
[48.]
C.N. Oliver, B.W. Ahn, E.J. Moerman, S. Goldstein, E.R. Stadtman.
Age-related changes in oxidized proteins.
J Biol Chem, 262 (1987), pp. 5488-5491
[49.]
A. Navarro.
Mitochondrial enzyme activities as biochemical markers of aging.
Mol Aspects Med, 25 (2004), pp. 37-48
[50.]
M. Meydani, R.D. Lipman, S.N. Han, et al.
The effect of long-term dietary supplementation with antioxidants.
Ann N Y Acad Sci, 854 (1998), pp. 352-360
[51.]
B. Drew, S. Phaneuf, A. Dirks, et al.
Effects of aging and caloric restriction on mitochondrial energy production in gastrocnemius muscle and heart.
Am J Physiol Regul Integr Comp Physiol, 284 (2003), pp. R474-R480
[52.]
M.J. Forster, P. Morris, R.S. Sohal.
Genotype and age influence the effect of caloric intake on mortality in mice.
FASEB J, 17 (2003), pp. 690-692
[53.]
A. Wu, X. Sun, Y. Liu.
Effects of caloric restriction on cognition and behavior in developing mice.
Neurosci Lett, 339 (2003), pp. 166-168
[54.]
E.R. Stadtman.
Importance of individuality in oxidative stress and aging.
Free Radic Biol Med, 33 (2002), pp. 597-604
[55.]
M.K. Shigenaga, T.M. Hagen, B.N. Ames.
Oxidative damage and mitochondrial decay in aging.
Proc Natl Acad Sci USA, 91 (1994), pp. 10771-10778
[56.]
B.N. Ames.
Measuring oxidative damage in humans: relation to cancer and ageing.
IARC Sci Publ, 89 (1988), pp. 407-416
[57.]
B.N. Ames, I. Elson-Schwab, E.A. Silver.
High-dose vitamin therapy stimulates variant enzymes with decreased coenzyme binding affinity (increased K(m)): relevance to genetic disease and polymorphisms.
Am J Clin Nutr, 75 (2002), pp. 616-658
[58.]
R.S. Sohal, W.C. Orr.
Role of oxidative stress in senescence.
Aging (Milano), 10 (1998), pp. 149-151
[59.]
T.M. Hagen, C.M. Wehr, B.N. Ames.
Mitochondrial decay in aging. Reversal through supplementation of acetyl-L-carnitine and N-tert-butyl-alpha-phenylnitrone.
Ann N Y Acad Sci, 854 (1998), pp. 214-223
[60.]
G. Lenaz.
Role of mitochondria in oxidative stress and ageing.
Biochim Biophys Acta, 1366 (1998), pp. 53-67
[61.]
Z. Radak, R. Takahashi, A. Kumiyama, et al.
Effect of aging and late onset dietary restriction on antioxidant enzymes and proteasome activities, and protein carbonylation of rat skeletal muscle and tendon.
Exp Gerontol, 37 (2002), pp. 1423-1430
[62.]
J.D. Churchill, R. Gálvez, S. Colcombe, R.A. Swain, A.F. Kramer, W.T. Greenough.
Exercise, experience and the aging brain.
Neurobiol Aging, 23 (2002), pp. 941-955
[63.]
S. Welle, S.B. Glueck.
In for the long run: focus on «Lifelong voluntary exercise in the mouse prevents age-related alterations in gene expression in the heart».
Physiol Genomics, 12 (2003), pp. 71-72
[64.]
A.M. Bronikowski, P.A. Carter, T.J. Morgan, et al.
Lifelong voluntary exercise in the mouse prevents age-related alterations in gene expression in the heart.
Physiol Genomics, 12 (2003), pp. 129-138

Este estudio ha sido financiado por los proyectos FIS 99-1033 y 02-1354 del Ministerio de Sanidad y Consumo de España, y por el Plan Andaluz de Investigación 2000-03 (CTS-194).

Copyright © 2005. Sociedad Española de Geriatría y Gerontología
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos