covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Análisis Comparativo de las técnicas utilizadas en un Sistema de Reconocimient...
Información de la revista
Vol. 14. Núm. 1.
Páginas 104-114 (enero - marzo 2017)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
4103
Vol. 14. Núm. 1.
Páginas 104-114 (enero - marzo 2017)
Open Access
Análisis Comparativo de las técnicas utilizadas en un Sistema de Reconocimiento de Hojas de Planta
Comparative Analysis of the Techniques Used in a Recognition System of Plant Leaves
Visitas
4103
Jair Cervantesa,
Autor para correspondencia
jcervantesc@uaemex.mx

Autor para correspondencia.
, Jesús Taltempaa, Farid García-Lamonta, José S. Ruiz Castillaa, Arturo Yee Rendonb, Laura D. Jalilia
a Posgrado e Investigación, Universidad Autónoma del Estado de México, Prolongación de Av. Zumpango s/n, Fracc. El Tejocote, Texcoco, 52346, México
b Facultad de Ciencias de la Computación, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, 80013, Mexico
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

El desarrollo de sistemas de identificación de hojas de plantas es un reto actual que comprende numerosas aplicaciones que van desde alimentación, medicina, industria y medio ambiente. En la literatura actual, se han propuesto varias técnicas con el objetivo de identificar plantas en diversos campos de aplicación. Sin embargo, las técnicas actuales están restringidas al reconocimiento e identificación de tipos de plantas limitados, utilizando descriptores de características específicos. En este artículo, se realiza un análisis comparativo de diversos métodos de extracción de características (texturales, cromáticas y geométricas) y clasificaci¿on sobre conjuntos de plantas muy similares y disimiles entre sí. Doce conjuntos de hojas con características de forma similares son estudiados utilizando varios clasificadores. Se analiza el desempeño de diferentes combinaciones de características en cada conjunto. Los resultados obtenidos muestran que para incrementar el desempeño de los clasificadores estudiados, es necesaria una combinación de las diferentes técnicas de extracción de características, esta necesidad es mayor cuando se trabaja con conjuntos de hojas con características muy similares. Además, se muestra el mejor desempeño de un clasificador con otro.

Palabras clave:
Clasificación
Descriptores
SVM
Conjuntos de Datos
Características
Abstract

The development of vision systems for identifying plants by leaves is an important challenge which has numerous applications ranging from food, medicine, industry and environment. Recently, several techniques have been proposed in the literature in order to identify plants in various fields of application. However, current techniques are restricted to the recognition and identification of plants using specific descriptors. In this paper, is accomplished a comparative analysis using different methods of feature extraction (textural, chromatic and geometric) and different methods of classification. The experiments are executed on very similar plants. Twelve sets of leaves with similar shape characteristics are studied using several classifiers. The performance of different combinations of classifiers-descriptors are analyzed in detail for each set. The results show that a combination of different feature extraction techniques is necessary in order to improve the performance. This combination of descriptors is more necessary when the leaves have similar characteristics.

Keywords:
Classification
Descriptors
SVM
Data Sets
Referencias
[Asraf et al., 2012]
M.H. Asraf, M.T. Nooritawati, M.S.B. Shah Rizam.
A Comparative Study in Kernel-Based Support Vector Machine of Oil Palm Leaves Nutrient Disease.
Procedia Engineering, 41 (2012), pp. 1353-1359
[Bernardo and Smith, 1994]
J. Bernardo, A. Smith.
Bayesian Theory.
Wiley, (1994),
[Brandstät and Van Bang, 2006]
A. Brandstät, L. Van Bang.
Structure and linear time recognition of 3-leaf powers.
Information Processing Letters, 98 (2006), pp. 133-138
[Borges et al., 2011]
J. Borges, D.J. Bioucas, A. Marc¸al.
Bayesian hyperspectral image segmentation with a discriminative class learning. IEEE Transactions on Geoscience and Remote Sensing;, 49 (2011), pp. 2151-2164
[Cerutti et al., 2013]
G. Cerutti, L. Tougne, J. Mille, A. Vacavant, D. Coquin.
Understanding leaves in natural images, A model-based approach for tree species identification.
Computer Vision and Image Understanding, 117 (2013), pp. 1482-1501
[Chaki and Parekh, 2012]
J. Chaki, R. Parekh.
Designing an automated system for plant leaf recognition.
International Journal of Advances in Engineering Technology, 2 (2012), pp. 149-158
DOI: 10.1.1.667.5253
[Cope et al., 2012]
J.S. Cope, D. Corney, J.Y. Clark, P. Remagnino, P. Wilkin.
Plant species identification using digital morphometrics: A review.
Expert Systems with Applications, 39 (2012), pp. 7562-7573
[Dempster et al., 1977]
A. Dempster, N. Laird, D. Rubin.
Maximum likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistics Society, 1 (1977), pp. 1-38
[Du et al., 2007a]
J.X. Du, X.F. Wang, G.J. Zhang.
Leaf shape based plant species recognition.
Applied Mathematics and Computation, 185 (2007), pp. 883-893
[Du et al., 2013]
J.X. Du, Ch.M. Zhai, Q.P. Wang.
Recognition of plant leaf image based on fractal dimension features.
Neurocomputing, 116 (2013), pp. 150-156
[Flusser and Suk, 1993]
J. Flusser, T. Suk.
Pattern recognition by affine moment invariants.
Pattern Recognition, 26 (1993), pp. 167-174
[Gonzalez and Woods, 2010]
R.C. Gonzalez, R.E. Woods.
Digital Image Processing Using MATLAB.
Pearson, (2010),
[Gwo et al., 2013]
Ch.Y. Gwo, Ch.H. Wei, Y. Li.
Rotary matching of edge features for leaf recognition.
Computers and Electronics in Agriculture, 91 (2013), pp. 124-134
[Haralick, 1979]
R.M. Haralick.
Statistical and Structural Approaches to Texture.
Proc. IEEE, 67 (1979), pp. 786-804
[Haralick et al., 1973]
R.M. Haralick, K. Shanmugam, I. Dinstein.
Textural Features for Image Classification. IEEE Transactions On System.
Man Cybernetics, 6 (1973), pp. 610-621
[He and Wang, 1990]
D.C. He, L. Wang.
Texture Unit, Texture Spectrum, And Texture Analysis, Geoscience and Remote Sensing.
IEEE Transactions on, 28 (1990), pp. 509-512
[Hearn, 2009]
D.J. Hearn.
Taxon, (2009), pp. 934-954
[Hu, 1962]
M.K. Hu.
Visual pattern recognition by moment invariants IRE Trans. Inform.
Theory, 8 (1962), pp. 179-187
[Hu and Collomosse, 2013]
R. Hu, J. Collomosse.
A performance evaluation of gradient field HOG descriptor for sketch based image retrieval.
Computer Vision and Image Understanding, 117 (2013), pp. 790-806
[Husin et al., 2012]
Z. Husin, A.Y.M. Shakaff, A.H.A. Aziz, R.S.M. Farook, M.N. Jaafar, U. Hashim, A. Harun.
Embedded portable device for herb leaves recognition using image processing techniques and neural network algorithm.
Computers and Electronics in Agriculture, 89 (2012), pp. 18-29
[Intelengine, 2016]
Intelengine.cn. (2016). intelengine.cn. [online], Intelligent Computing Laboratory, Chinese Academy of Sciences Homepage. Disponible en ! http://www.intelengine.cn/English/dataset ¿.
[Jimáenz, 2013]
J.C. Jimáenz.
Emisiénez M.E., Sanchez A., Carvajal H., Blanco J., Són Acón del Procesoustica y Redes Neuronales para Modelado y Caracterizaci¿de Soldadura por Fricción Agitación, Revista Iberoamericana de Automática e Informática Industrial RIAI.
[Kadir et al., 2012]
A. Kadir, L.E. Nugroho, A. Susanto, P.I. Santosa.
Experiments of distance measurements in a foliage plant retrieval system.
International Journal of Signal Processing, Image Processing and Pattern Recognition, 5 (2012), pp. 256-263
[Kaur and Kaur, 2012]
G. Kaur, G. Kaur.
Classification of biological species based on leaf architecture.
International Journal of Engineering Research and Development, 1 (2012), pp. 35-42
DOI: 10.1.1.642.4983
[Larese et al., 2014]
M. Larese, R. Namías, R. Craviotto, M. Arango, C. Gallo, P.M. Granitto.
Automatic classification of legumes using leaf vein image features.
Pattern Recognition, 47 (2014), pp. 158-168
[Larese et al., 2014a]
M. Larese, A. Bayá, R. Craviotto, M. Arango, C. Gallo, P.M. Granitto.
Multiscale recognition of legume varieties based on leaf venation images.
Expert Systems with Applications, 41 (2014), pp. 4638-4647
[Liu et al., 2008]
J. Liu, Y. Liu, C. Yan.
Proceedings of the Fifth International Conference on Fuzzy Systems and Knowledge Discovery, (2008), pp. 551-554
[Ma and Manjunath, 1996]
W. Ma, B. Manjunath.
Texture features and learning similarity.
Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), pp. 425-430 http://dx.doi.org/10.1109/cvpr.1996.517107
[Manjunath and Ma, 1996]
B. Manjunath, W. Ma.
Texture features for browsing and retrieval of image data.
IEEE Trans. Pattern Anal. Mach. Intell., 18 (1996), pp. 837-842
[Yang et al., 2008]
Yang M., Kpalma K. and Ronsin J., 2008. A Survey of Shape Feature Extraction Techniques, Pattern Recognition Techniques, INTECH Open Access Publisher.
[Ng and Jordan, 2002]
A.Y. Ng, M.I. Jordan.
On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes.
Advances in Neural Information Processing Systems 14, MIT-Press, (2002), pp. 841-848
[Nixon and Aguado, 2002]
M. Nixon, A. Aguado.
Feature Extraction and Image Processing.
Academic Press, (2002),
[Novotný and Suk, 2013]
P. Novotný, T. Suk.
Leaf recognition of woody species in Central Europe.
Biosystems Engineering, 115 (2013), pp. 444-452
[Kumar et al., 2012]
N. Kumar, P.N. Belhumeur, A. Biswas.
Leafsnap: a computer vision system for automatic plant species identification.
Proc. E.C.C.V., 2012 (2012), pp. 502-516
[Park and Kim, 2004]
Park J.S., Kim T.-Y., 2004. Shape-based image retrieval using invariant features, in: K. Aizawa, Y. Nakamura, S. Satoh, (Eds.), Advances in Multimedia Information Processing-PCM 2004, Berlin/Heidelberg Lecture Notes in Computer Science, pp. 146-153 DOI: 10.1007/978-3-540-30542-219.
[Portillo et al., 2009]
E. Portillo, I. Cabanes, M. Marcos, A. Zubizarreta.
Aplicación de Redes Neuronales en la Detección de Regímenes Degradados en el Proceso Wedm.
Revista Iberoamericana de Automática Industrial RIAI, 6 (2009), pp. 39-50
[Rossomando et al., 2010]
F.G. Rossomando, C. Soria, R. Carelli.
Control de Robots Móviles con Incertidumbres Dinámicas usando Redes de Base Radial.
Revista Iberoamericana de Automática e Informática Industrial RIAI, 7 (2010), pp. 28-35
[Rumelhart et al., 1986]
D.E. Rumelhart, G.E. Hinton, R.J. Williams.
Learning representations by back-propagating errors.
Nature, 323 (1986), pp. 533-536
[Russell and Norvig, 2003]
S. Russell, P. Norvig.
[1995]. Artificial Intelligence: A Modern Approach.
2nd ed., Prentice Hall, (2003),
[Sampallo, 2003]
Sampallo G., 2003. Reconocimiento de tipos de hojas. Inteligencia Artificial. Revista Iberoamericana de Inteligencia Artificial, 7(21), 55-62., Asociación Españanola para la Inteligencia Artificial España.
[Smeulders et al., 2000]
A.W.M. Smeulders, M. Worring, S. Santini, A. Gupta, R. Jain.
Content-based image retrieval at the end of the early years.
IEEE Trans. Pattern Anal. Mach. Intell., 22 (2000), pp. 1349-1380
[Sonka et al., 1993]
M. Sonka, V. Hlavac, R. Boyle.
Image Processing.
Analysis and Machine Vision, Springer, (1993),
[Tico et al., 2000]
M. Tico, T. Haverinen, P. Kuosmanen.
Proceedings of the Nordic Signal Processing Symposium (NORSIG-2000), (2000), pp. 157-160
[Valverde and Gachet, 2007]
R. Valverde, D. Gachet.
Identificación de sistemas dinámicos utilizando redes neuronales RBF.
Revista Iberoamericana de Automática e Informática Industrial RIAI, 4 (2007), pp. 32-42
[Vapnik, 1995]
V. Vapnik.
The Nature of Statistical Learning Theory.
Springer, (1995),
[Venters and Cooper, 2000]
Venters C., Cooper D., 2000. A Review of Content-based Image Retrieval Systems, Technical Report, Manchester Visualization Centre, Manchester Computing, University of Manchester, Manchester, UK.
[Wang and He, 1990]
L. Wang, D. He.
Texture Classification Using Texture Spectrum.
Pattern Recognition, 23 (1990), pp. 905-910
[Werbos, 1994]
P.J. Werbos.
The Roots of Backpropagation. From Ordered Derivatives to Neural Networks and Political Forecasting.
John Wiley Sons, Inc, (1994),
[Xia et al., 2013]
Ch. Xia, J. Lee, Y. Li, Y. Song, B. Chung, T.S. Chon.
Plant leaf detection using modified active shape models.
Biosystems Engineering, 116 (2013), pp. 23-35
[Du et al., 2007]
J.X. Du, X.F. Wang, G. Zhang.
Leaf shape based plant species recognition.
Applied Mathematics and Computation, 185 (2007), pp. 883-893
[Zhang and Lei, 2011]
S. Zhang, Y.K. Lei.
Modified locally linear discriminant embedding for plant leaf recognition.
Neurocomputing, 74 (2011), pp. 2284-2290
[Zhang et al., 2013]
S. Zhang, Y. Lei, T. Dong, X.P. Zhang.
Label propagation based supervised locality projection analysis for plant leaf classification.
Pattern Recognition, 46 (2013), pp. 1891-1897
Descargar PDF
Opciones de artículo