covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Análisis de imágenes mediante el método de los momentos usando funciones de b...
Información de la revista
Vol. 12. Núm. 1.
Páginas 69-78 (enero - marzo 2015)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
4180
Vol. 12. Núm. 1.
Páginas 69-78 (enero - marzo 2015)
Open Access
Análisis de imágenes mediante el método de los momentos usando funciones de base continuas a intervalos (PCBF)
Image analysis by the method of moments using Piecewise Continuous Basis Functions (PCBF)
Visitas
4180
Sergio Domínguez1
Centro de Automática y Robótica UPM-CSIC, Sede Castellana. c/ José Gutiérrez Abascal, 2, 28006 Madrid, España
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

Los invariantes generados a partir de momentos extra¿ıdos de una imagen aparecen recurrentemente en la bibliograf¿ıa como uno de los me¿todos ma¿s potentes para la descripcio¿n de ima¿genes, y ma¿s concretamente de formas. En este art¿ıculo se propone el uso de funciones de base continuas a intervalos (PCBF) como alternativa a las bases que se vienen utilizando tradicionalmente en la aplicacio¿n de este me¿todo, todas ellas continas como puedan ser las muy conocidas de Zernike, Legendre o Tchebichev. El uso de funciones discontinuas se justifica en la naturaleza discontinua de los objetos analizados, en este caso las ima¿genes: es de sobra conocido que los contornos de los objetos visibles en ellas se caracterizan como discontinuidades en la serie de valores de luminancia cuando nos desplazamos de un lado a otro de dichos contornos. El ana¿lisis de tales sen¿ales con funciones continuas produce resultados no deseados, como el feno¿meno de Gibbs, que pueden ser evitados mediante el uso de funciones como las propuestas, generando mejores aproximaciones a la forma analizada. Adicionalmente, las bases propuestas permiten fa¿cilmente, como se demuestra, la generacio¿n de invariantes a rotacio¿n, caracter¿ıstica altamente deseable para un descriptor de forma, puesto que a priori no se conoce con que¿ orientacio¿n aparecera¿ esta en la imagen objeto del ana¿lisis. La invarianza a traslacio¿n y escala se consigue mediante un sencillo proceso de normalizacio¿n. Se presentan los test que confirman esta hipo¿tesis, comenzando por un ana¿lisis del comportamiento de los invariantes ante el ruido en la imagen que permitira¿ determinar en que¿ nu¿mero deben ser extra¿ıdos. A continuacio¿n, y una vez definida esta longitud de descripcio¿n, se realizan sendos experimentos para determinar el comportamiento de los invariantes propuestos en una tarea de recuperacio¿n de ima¿genes, tanto libres de ruido como corrompidas con distintos grados de ruido gaussiano. Los resultados avalan la hipo¿tesis de idoneidad para la tarea, demostrando que se pueden alcanzar resultados similares a los de la base de referencia, Zernike, utilizando descripciones hasta un 40% ma¿s cortas.

Palabras clave:
Método de los momentos
descriptores invariantes
bases ortonormales
recuperación basada en contenido
análisis de imágenes
Abstract

Invariants generated departing from moments, previously extracted from an image, appear frequently in the bibliography as one of the most powerful means of describing images, and more precisely shapes. In this paper, the use of Piecewise Continuous Basis Functions (PCBF) is proposed as an alternative to those basis which have been used traditionally in the method of moments, all of them continuous as the well known Zernike, Legendre or Tchebichev basis. The use of discontinuous basis can be justified by the own discontinuous nature of the object of such analysis, namely images: it is thoroughly known that the contours of visible objects are modeled as discontinuities in the series of luminance values as we go from one side of the border to the other. Analyzing such discontinuous objects by means of continuous functions can lead to undesired results, as the Gibbs phenomenon, that can be avoided by simply shifting to discontinuous basis for the analysis, getting better approximations to the described object. Additionally, the proposed basis can easily generate, as shown in this paper, rotation invariants, which is a very desirable feature for a shape descriptor, given that the orientation that the shape will have in an image is not known in advance. Translation and scale invariance is obtained by means of a simple normalization process. Test confirming this hypothesis are presented as well, starting with an analysis of the behavior of the proposed invariantes in noisy environments, which allow to fix the number of invariants that have to be extracted. Next, once this description length has been determined, new experiments are carried out to assess the performance of the proposed invariants in a content based retrieval task, both in a noise free and in noisy environments, having images corrupted with different gaussian noise intensities. Results confirm our hypothesis that these descriptors are very well suited for this task, showing that they can achieve results similar to those obtained using the continuous reference basis, which is Zernike's, but with a description which is roughly a 40% shorter.

Keywords:
Method of moments
invariant descriptors
orthonormal basis
content based image retrieval
image analysis
Referencias
[Bovik, 2009]
A. Bovik.
The Essential Guide to Image Processing.
Academic Press, (2009),
[Chen and Xie, 2011]
Chen, G., Xie, W., 2011. Wavelet-based moment invariants for pattern recognition. Optical Engineering 50 (7), 077205-1–077205-9.
[Dominguez, 2013]
S. Dominguez.
Image analysis by moment invariants using a set of setp- like basis functions.
Pattern Recognition Letters, 34 (2013), pp. 2065-2070
[Fisher, 2011]
Fisher, R., 2011. URL: homepages.inf.ed.ac.uk/rbf/CVonline/Imagedbase.htm.
[Flusser, 2000]
J. Flusser.
On the independence of rotation moment invariants.
Pattern Recognition, 33 (2000), pp. 1405-1410
[Flusser et al., 2009]
J. Flusser, T. Suk, B. Zitova.
Moments and Moment Invariants in Pattern Recognition.
John Wiley and Sons Ltd, (2009),
[Hamood and Boussakta, 2011]
M.T. Hamood, S. Boussakta.
Fast walsh-hadamard-fourier transform algorithm.
IEEE Transactions on Signal Processing, 59 (November 2011), pp. 5627-5631
[Hewitt and Hewitt, 1979]
E. Hewitt, R.E. Hewitt.
The gibbs-wilbraham phenomenon: An episode in fourier analysis.
Archive for History of Exact Sciences, 21 (1979), pp. 129-160
[Hu, 1962]
M.-K. Hu.
Visual pattern recognition by moment invariants.
IRE Transactions on Information Theory, 8 (1962), pp. 179-187
[Khotanzad and Hong, 1990]
A. Khotanzad, Y.H. Hong.
Invariant image recognition by zernike moments.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 12 (1990), pp. 489-497
[Krommweh, 2009]
J. Krommweh.
An orthonormal basis of directional haar wavelets on triangles.
Results in Mathematics, 53 (2009), pp. 323-331
[Lee and Tarng, 1999]
B.Y. Lee, Y.S. Tarng.
Application of the discrete wavelet transform to the monitoring of tool failure in end milling using the spindle motor current.
International Journal of Advanced Manufacturing Technology, 15 (1999), pp. 238-243
[Mukundan, 2004]
R. Mukundan.
Some computational aspects of discrete orthonormal moments.
IEEE Transactions on Image Processing, 13 (2004), pp. 1055-1059
[Rao, 1983]
G.P. Rao.
Piecewise constant orthogonal functions and their application to systems and control.
Spinger Verlag, (1983),
[Reiss, 1991]
T.H. Reiss.
The revised fundamental theorem of moment invariants.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 13 (1991), pp. 830-834
[Rudin, 1991]
W. Rudin.
Functional Analysis.
McGraw Hill, (1991),
[Sasikala and Neevelani, 2010]
D. Sasikala, R. Neevelani.
Registration of brain images using fast walsh hadamard transform.
International Journal of Computer Science and Information Security, 8 (May 2010), pp. 96-105
[Sharvit et al., 1998]
D. Sharvit, J. Chan, H. Tek, B.B. Kimia.
Symmetry-based indexing of image databases.
Journal of Visual Communication and Image Representation, 9 (December 1998), pp. 366-380
[Teague, 1980]
M.R. Teague.
Image analysis via the general theory of moments.
Journal of the Optical Society of America, 70 (1980), pp. 920-930
[Teh and Chin, 1988]
C.-H. Teh, R.T. Chin.
On image analysis by the methods of moments.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 10 (1988), pp. 496-512
[Walsh, 1923]
J. Walsh.
A closed set of normal orthogonal functions.
American Journal of Mathematics, 45 (1923), pp. 5-24
[Xu and Li, 2008]
D. Xu, H. Li.
Geometric moment invariants.
Pattern Recognition, 41 (2008), pp. 240-249

www.car.upm-csic.es.

Descargar PDF
Opciones de artículo