covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Automática marina: una revisión desde el punto de vista del control
Información de la revista
Vol. 9. Núm. 3.
Páginas 205-218 (julio - septiembre 2012)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
7326
Vol. 9. Núm. 3.
Páginas 205-218 (julio - septiembre 2012)
Tutorial
Open Access
Automática marina: una revisión desde el punto de vista del control
Automatic marine: a review from a control point of view.^p
Visitas
7326
Jesús M. de la Cruz Garcíaa,
Autor para correspondencia
jmcruz@fis.ucm.es

Autor para correspondencia.
, Joaquín Aranda Almansab, José M. Girón Sierraa
a Dpto. Arquitectura de Computadores y Automática, Facultad de Ciencias Físicas, Universidad Complutense 28040 Madrid, España
b Dpto. de Informática y Automática, E.T.S.I. Informática, Universidad Nacional de Educación a Distancia, 28040 Madrid, España
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

La Automática es una disciplina horizontal muchos de cuyos temas se aplican en el campo del sector marítimo, como son: la robótica, la ingeniería de control, la inteligencia artificial, el modelado y la simulación, los sensores y los actuadores. En este trabajo hacemos una revisión de los avances que han tenido lugar en los últimos años desde el punto de vista del modelado, la identificación y el control de los vehículos marinos

Palabras clave:
Sistemas marinos
autopilotos
posicionamiento dinámico
estabilización del alabeo
modelado
identificación y control de vehículos marinos
sistemas sub actuados
hidrodinámica
Abstract

Automatic control is an horizontal subject and many of their branches are applied in the marine fields: robotics, control engineering, artificial intelligence, modeling and simulation, sensors and actuators. The paper presents an overview of some of the major advances that have taken place from the point of view of marine vehicles modeling, identification and control.^p

Keywords:
Marine systems
autopilots
dynamic positioning
roll stabilization
control
modeling
identification
underactuated autonomous vehicles
hydrodynamics^p
Texto completo
Referencias no citadas

Abkowitz, 1964, Abkowitz, 1980, ABS, 2006, Aguiar et al., 2004, Aguiar et al., 2007, Aguiar and Hespanha, 2007, ANSYS, 2012, Aranda et al., 2000, Aranda et al., 2004, Aranda et al., 2005a, Aranda et al., 2005b, Ashrafiuon and Muske, 2008, ¿ström and Källström, 1976, Barros et al., 2008, Behal et al., 2002, Bhattacharyya and Haddara, 2006, Bennet, 1979, Bennet, 1984, Blanke and Knudsen, 2006, Casado and Ferreiro, 2005, Casado et al., 2007, CFDShip, 2012, CEHIPAR, 2012, Chwa, 2011, Cummins, 1962, De la Cruz et al., 1998, De la Cruz et al., 2004, Do, 2002, Do et al., 2002, Do et al., 2003, Do and Pan, 2003, Do et al., 2004a, Do et al., 2004b, Do and Pan, 2005, Do and Pan, 2009, Do, 2010, Encarnaçao et al., 2000a, Encarnaçao and Pascoal, 2000b, Encarnaçao and Pascoal, 2001, Esteban et al., 2000, Faltinsen, 1990, Faltinsen, 2005, Fang and Luo, 2008a, France et al., 2003, Francescutto et al., 2004a, Fedyaevsky and Sobolev, 1963, Francescutto et al., 2004b, Fredriksen and Pettersen, 2006, Fossen, 1994, Fossen et al., 1996, Fossen, 2002, Fossen et al., 2003, Fossen, 2011, Galeazzi and Perez, 2011, Galeazzi et al., 2009a, Galeazzi et al., 2009b, Krstic et al., 1995, Lamb, 1932, Lloyd, 1989, Levadou and van’t Veer, 2011, Lewis, 1989, Liao et al., 2011, Luo and Zou, 2009, Mahfouz and Haddara, 2003, Mahfouz, 2004, MARIN, 2012, MARINTEK, 2012, Muñoz-Mansilla et al., 2009, Newman, 1977, Nguyen et al., 2007, O’Brien, 2009, Ogilvie, 1964, Ohtsu et al., 1979, Panneer Selvam et al., 2005, Perez, 2005, Perez and Goodwin, 2007, Perez and Fossen, 2008, Perez and Fossen, 2009, Perez and Revestido-Herrero, 2010, Revestido-Herrero et al., 2012, Rueda et al., 2005, Santos et al., 2004, SEAWAY, 2012, Sellars and Martin, 1992, SN, 2001, Sørensen, 2005, Sørensen, 2011, Toussaint et al., 2000, Van Amerongen and Udink Ten Cate, 1975, Van Amerongen, 1984, Velasco et al., 2010, WAMIT, 2012, Yoon and Rhee, 2003, Zhou and Blanke, 1987 and Zhou and Blanke, 1989.

Referencias
[Abkowitz, 1964]
M.A. Abkowitz.
Lecturenotes on ship hydrodynamics-steering and manoeuvrability.
Technical Report Hy-5. Hydro and Aerodynamics Laboratory Lyngby, Denmark, (1964), pp. 1964
[Abkowitz, 1980]
M.A. Abkowitz.
Measurement of hydrodynamic characteristic from ship maneuvering trials by system identification.
Transactions of the Society of Naval Architects and Marine Engineers, 88 (1980), pp. 283-318
[ABS, 2006]
ABS, 2006. Guide for Vessel Maneuverability. American Bureau of Shipping. ABS Plaza 16855 Northchase Drive, Houston, TX 77060 USA.
[Aguiar et al., 2004]
A.P. Aguiar, D.B. Dačić, J.P. Hespanha, P. Kokotovic.
Path- following or reference-tracking?.
An answer based on limits of performance. In: Proc. 5th IFAC/EURON Symp. Intell. Auton. Veh., Lisbon, Portugal, Jul., (2004), pp. 2004
[Aguiar et al., 2007]
Aguiar et al., Aguiar, A.P., Hespanha, J.P. and Kokotović, P. 2005.Path-following for non- minimum phase systems removes performance limitations. IEEE Trans. Autom. Control, vol. 50, 2, pp. 234-239.
[Aguiar and Hespanha, 2007]
Aguiar, A.P. and Hespanha, J.P. 2007. Trajectory-Tracking and Path- Following of Underactuated Autonomous Vehicles with Parametric Modeling Uncertainty. IEEE Trans. Autom. Control, vol. 52, 8, pp. 1362-1379.
[ANSYS, 2012]
ANSYS, 2012. http://www.ansys.com/Products/Simulation+Technology/Fluid+Dynamics.(acceso marzo 2012).
[Aranda et al., 2000]
Aranda, J., de la Cruz, J.M., Diaz, J.M., de Andrés, B, Ruiperez, P., Esteban, S., Girón, J.M., 2000. Modelling of a High Speed Craft by a Nonlinear Least Squares Method with Constraints. Proceedings of the 5th IFAC Conference on Maneuvring and Control of Marine Craft (MCMC’2000). Aalborg, Denmark. Pp. 227-232.
[Aranda et al., 2004]
Aranda, J., de la Cruz, J.M., Diaz,J.M., 2004. Identification of multivariable models of fast ferries. European Journal of Control, 10 (2), pp. 187-198.
[Aranda et al., 2005a]
Aranda, J., de la Cruz, J.M.,,Diaz, J.M., 2005a. Design of a multivariable robust controller to decrease the motion sickness incidence in fast ferries. Control Engineering Practice 13 (8), pp. 985-999.
[Aranda et al., 2005b]
Aranda, J., Muñoz-Mansilla, R., Dıaz, J.M., 2005b. Robust control for the coupling of lateral and longitudinal dynamics in high-speed crafts. In: Proceedings of the 16th World Congress of the IFAC, Prague.
[Ashrafiuon and Muske, 2008]
Ashrafiuon, H., and Muske, K.R., 2008. Sliding Mode Tracking Control of Surface Vessels. 2008 American Control Conference, pp.-558-561.
[¿ström and Källström, 1976]
¿ström, K.J., Källström, C.G., 1976. Identification of ship steering dynamics. Automatica12 (1), pp. 9-22.
[Barros et al., 2008]
Barros, E.A., Pascoal, A. and de Sa, E., 2008. Investigation of a method for predicting AUV derivatives. Ocean Engenieering, vol. 35, pp. 1627-1636.
[Behal et al., 2002]
Behal, A., Dawson, D., Dixon, W. and Fang, Y. 2002. Tracking and regulation control of an underactuated surface vessel with nonintegrable dynamics. IEEE Trans. Autom. Control, vol. 47, 3, pp. 495-500.
[Bhattacharyya and Haddara, 2006]
Bhattacharyya, S.K. and Haddara M. R., 2006. Parametric Identification for Nonlinear Ship Maneuvering. Journal of Ship Research, Vol. 50, No. 3, September 2006, pp. 197-207.
[Bennet, 1979]
Bennet, S., 1979. A History of Control Engineering 1800-1930. Peter Peregrinus. London.
[Bennet, 1984]
Bennet, S., 1984. Nicolas Minorsky and the Automatic Steering of Ships. IEEE Control Systems Magazine, vol. 4, 4, pp.10-15.
[Blanke and Knudsen, 2006]
Blanke, M., Knudsen, M., 2006. Efficient parameterization for grey-box model identification of complex physical systems. In: 14th IFAC Symposium on System Identification, SYSID 2006, NewCastle, Australia, pp. 338-343.
[Casado and Ferreiro, 2005]
Casado, M.H. and Ferreiro, R, 2005. Identification of the nonlinear ship model parameters based on the turning test trial and the backstepping procedure. Ocean Engineering, vol. 32, pp.1350-1369.
[Casado et al., 2007]
Casado, M.H., Ferreiro, R. and Velasco, F.J., 2007. Identification of Nonlinear Ship Model Parameters Based Turning Circle Test. Journal of Ship Research, vol. 51, 2, pp. 174-181.
[CFDShip, 2012]
CFDShip, 2012. http://old.iihr.uiowa.edu/∼shiphydro/cfdshipiowa.htm.(acceso marzo 2012).
[CEHIPAR, 2012]
CEHIPAR, 2012. http://www.cehipar.es/.(acceso marzo, 2012).
[Chwa, 2011]
Chwa, D., 2011. Global Tracking Control of Underactuated Ships With Input and Velocity Constraints Using Dynamic Surface Control Method. IEEE Trans. Control Syst. Techno., vol. 19, 6, pp. 1357-1370.
[Cummins, 1962]
Cummins, W.E., 1962. The impulse response funtion and ship motions. Schiffstechnik 9, 47, pp. 101-109.
[De la Cruz et al., 1998]
De la Cruz, J.M., Aranda, J., Ruiperez, P., Diaz, J.M., Marón, A, 1998. Identification of the Vertical Plane Motion Model of a High Speed Craft by Model Testing in Irregular Waves. Proceedings of the IFAC Conference on Control Applications in Marine Systems (CAMS’98) Fukuoka, Japan. Pp. 257-262.
[De la Cruz et al., 2004]
De la Cruz, J.M., Aranda, J., Giron-Sierra, J.M., Velasco, F., Esteban, S.,Diaz, J.M. and Andres-Toro, B., 2004. Improving the Confort of a Fast Ferry. IEEE Control Systems Magazine, April, 2004, pp. 47-60.
[Do, 2002]
Do, K.D. 2002. Universal controllers for stabilization and tracking of underactuated ships, Syst. Control Lett., vol. 47, pp. 299-317.
[Do et al., 2002]
Do, K.D., Jiang, Z.P. and J. Pan, J. 2002. Underactuated ship global tracking under relaxed conditions. IEEE Trans. Autom. Control, vol. 47, no. 9, pp. 1529-1536.
[Do et al., 2003]
Do, K.D., Jiang, Z.P., & Pan, J. 2003. Robust global stabilization of underactuated ships on a linear course: State and output feedback. International Journal of Control, 76, pp. 1-17.
[Do and Pan, 2003]
Do, K.D., Pan, J., 2003. Global way point tracking control of underactuated ships under relaxed assumptions. In: Proceedings of the 42 nd IEEE Conference on Decision and Control, pp. 1244-1249.
[Do et al., 2004a]
Do, K.D., Jiang, Z.P. and Pan, J. 2004. Robust adaptive path following of underactuated ships, Automatica, vol. 40, no. 6, pp. 929-944.
[Do et al., 2004b]
Do, K.D., Pan, J. and Jiang, Z.P. 2004. Robust and adaptive path following for underactuated autonomous underwater vehicles. Ocean Engineering, vol. 31, pp. 1967-1997.
[Do and Pan, 2005]
Do, K.D., Pan, J., 2005. Global tracking of underactuated ships with nonzero off- diagonal terms. Automatica 41, 87-95.
[Do and Pan, 2009]
Do, K.D., Pan, J., 2009. Control of Ships and Underwater Vehicles: Design for Underactuated and Nonlinear Marine Systems. Springer, London.
[Do, 2010]
Do, K.D., 2010. Practical control of underactuated ships. Ocean Engineering, vol. 37, pp. 1111-1119.
[Encarnaçao et al., 2000a]
Encarnaçao, P., Pascoal, A., Arcak, M., 2000a. Path following for autonomous marine craft. In: Proceedings of the 5th IFAC Conference on Manoeuvring and Control of Marine Craft, pp. 117-122.
[Encarnaçao and Pascoal, 2000b]
Encarnaçao, P. and A. M. Pascoal, 2000b. 3D path following control of autonomous underwater vehicles. In: Proc. 39th Conf. Decision Control, Sydney, Australia, Dec. 2000.
[Encarnaçao and Pascoal, 2001]
Encarnaçao, P., and Pascoal, A. 2001. Combined trajectory tracking and path following: An application to the coordinated control of autonomous marine craft. In: Proceedingsof the 40th IEEE Conference on Decision and Control, Orlando, FL, vol 1, pp. 964-969.
[Esteban et al., 2000]
Esteban, S., De la Cruz, J.M., Girón-Sierra, J.M., Andrés, B., Diaz, J.M., Aranda, J., 2000. Fast Ferry Vertical Acceleration Reduction with Active Flaps and T-Foil. In: Proceedings of the 5th IFAC Conference on Maneuvring and Control of Marine Craft (MCMC’2000). Aalborg, Denmark. pp. 233-238.
[Faltinsen, 1990]
Faltinsen, O.M., 1990. Sea loads on ships and offshore structures. Cambridge University Press.
[Faltinsen, 2005]
Faltinsen, O.M., 2005. Hydrodynamics of high-speed marine vehicles. Cambridge University Press, New York.
[Fang and Luo, 2008a]
Fang M.C. and Luo J.H., 2008a, “The Ship Track Keeping with Roll Reduction Using a Multiple-states PD Controller on the Rudder Operation”, Marine Technology, 2008, 45(1), pp. 21-27.
[France et al., 2003]
France, W.M, Levadou, M, Treakle, T.W., Paulling, J.R., Michel, K. and Moore, C., 2003. An Investigation of Head-Sea Parametric Rolling and its Influence on Container Lashing Systems, Marine Technology¸ Vol. 40, 1. pp. 1-19.
[Francescutto et al., 2004a]
Francescutto, A., G. Bulian, G. and & Lugni, C., 2004. Nonlinear and stochastic aspects of parametric rolling. Marine Technology, 41, 2.
[Fedyaevsky and Sobolev, 1963]
Fedyaevsky,K, K. and Sobolev G.V., 1963. Control and stability in ship design. State Union Shipbuilding House.
[Francescutto et al., 2004b]
Francescutto, A., G. Bulian, G. and & Lugni, C., 2004. Nonlinear and stochastic aspects of parametric rolling. Marine Technology, 41, 2.
[Fredriksen and Pettersen, 2006]
Fredriksen, E., Pettersen, K.Y., 2006. Global K–exponential way-point maneuvering of ships: Theory and experiments. Automatica 42, pp.677-687.
[Fossen, 1994]
Fossen, T.I., 1994. Guidance and Control of Ocean Vehicles. Wiley.
[Fossen et al., 1996]
Fossen, T.I., Sagatun, S.I. and Sorensen, A.J. 1996. Identification of dynamically positioned ships. Modeling, Identification and Control, vol 17, 2, pp.153-165.
[Fossen, 2002]
Fossen, T.I., 2002. Marine Control Systems. Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles. Marine Cybernetics.
[Fossen et al., 2003]
Fossen, T.I., Breivik, M., & Skjetne, R. (2003). Line-of-Sight Path Following of Underactuated Marine Craft. Proceedings IFAC MCMC’03.
[Fossen, 2011]
Fossen, T.I., 2011. Marine craft hydrodynamics and motion control. John Wiley & Sons.
[Galeazzi and Perez, 2011]
Galeazzi, R. and Perez, T., 2011. A Nonlinear Observer for Estimating K Transverse Stability Parameters of Marine Surface Vessels. In Proc. of the 18th IFAC World Congress, Milan Italy.
[Galeazzi et al., 2009a]
Galeazzi, R., Holden, C., Blanke, M. and; Fosse n, T.I., 2009a. Stabilisation of Parametric Roll Resonance by Combined Speed and Fin Stabiliser Control. Proc. of the European Control Conference, pp. 4895-4900.
[Galeazzi et al., 2009b]
Galeazzi, R., Blanke, M. and Poulsen, N.K., 2009b. Detection of Parametric Roll Resonance on Ships from Indication of Nonlinear Energy Flow. In: 7th IFAC Symp. on Fault Detection, Supervision and Safety of Technical Processes. Sants Hotel, Spain.Conference Maneuvering and Control of Marine Craft (MCMC’03) Girona, Spain.
[Krstic et al., 1995]
Krstic, M., Kanellakopoulos, I., Kokotovic, P., 1995. Nonlinear and Adaptive Control Design. Wiley, New York.
[Lamb, 1932]
Lamb, H., 1932. Hydrodynamics, 6th Edition. Dover, New York, Chapter VI.
[Lloyd, 1989]
Lloyd, A.E.J.M., 1989. Seakeeping; ship behavior in rough water. Ellis Horwood Ltd.
[Levadou and van’t Veer, 2011]
Levadou, M and van’t Veer R., 2011. Parametric roll and ship design. In: M.A.S. Neves et al. (eds). Contemporary Ideas on Ship Stability and Capsizing in Waves. Fluid Mechanics and Its applications 96, pp.307-330. Springer. DOI 10 1007/978-94-007-1482-3_18.
[Lewis, 1989]
Lewis, E.V., 1989. Principles of Naval Architecture, Society of Naval Architects & Marine Engineers (SNAME), New Jersey, 1989.
[Liao et al., 2011]
Liao, Y., Wan, L. and Zhuang, J., 2011. aBackstepping dynamical sliding. mode control method for the path following of the underactuated surface. vessel. Procedia Engineering 15, pp. 256-263.
[Luo and Zou, 2009]
Luo W. L. and Zou Z. J., 2009. Parametric Identification of Ship Maneuvering Modelsby Using Support Vector Machines.Journal of Ship Research, Vol. 53, 1, pp. 19-30.
[Mahfouz and Haddara, 2003]
Mahfouz, A.B., and Haddara, M.R. 2003. Effects of the damping and excitation on the identification of the hydrodynamic parameters for an underwater robotic vehicle, Ocean Engineering, 30, pp. 1005-1025.
[Mahfouz, 2004]
Mahfouz, A.B., 2004. Identification of the nonlinear ship rolling motion equation using the measured response at sea, Ocean Engineering, 31, pp. 2139-2156.
[MARIN, 2012]
MARIN, 2012. http://www.marin.nl/web/Facilities-Tools/Software/CFD.htm.(acceso, marzo 2012).
[MARINTEK, 2012]
MARINTEK, 2012. http://www.sintef.no/home/MARINTEK/Software-developed-at-MARINTEK/VERES/.(acceso marzo 2012).
[Muñoz-Mansilla et al., 2009]
Muñoz-Mansilla R., Aranda J., Diaaz J.M.,, de la Cruz, J.M., 2009. Parametric Model Identification of High-Speed Craft Dynamics. Ocean Engineering, 36, pp. 1025-1038.
[Newman, 1977]
Newman, J.N., 1977. Marine Hydrodynamics. MIT Press.
[Nguyen et al., 2007]
Nguyen, T.D., Sorensen, A.J., & Quek, S.T. (2007). Design of hybrid controller for dynamic positioning from calm to extreme sea conditions. Automatica, 43(5), pp.768-785.
[O’Brien, 2009]
O’Brien, J., 2009. Multi-path nonlinear dynamic compensation for rudder roll tabilization. Control Engineering Practice, vol. 17, pp. 1405-1414.
[Ogilvie, 1964]
Ogilvie, T.F., 1964. Recent progress toward the understanding and prediction of ship motions. In: The Fifth Symposium on Naval Hydrodynamics. pp. 3-128.
[Ohtsu et al., 1979]
Ohtsu, K., Horigome, M. and G. Kitagawa, 1979. A New Ship's Auto Pilot Design Through a Stochastic Model. Automatica, 15,3, pp 255-268, May 1979.
[Panneer Selvam et al., 2005]
Panneer Selvam, R., Bhattacharyya, S.K. and Haddara M. R., 2005. A frequency domain system identification method for linear ship maneuvering. International Shipbuilding Progrress, 52, no. 1, pp. 5-27.
[Perez, 2005]
Perez, T., 2005. Ship Motion Control. Course Keeping and Roll Stabilization Using Rudder and Fins. Springer Verlag.
[Perez and Goodwin, 2007]
Perez, T., & Goodwin, G. (2007). Constrained predictive control of ship fin stabilizers to prevent dynamic stall. Control Engineering Practice, 16(4), 482-494.
[Perez and Fossen, 2008]
Perez, T. and Fossen, T.I., 2008. Time- vs. Frequency-domain Identification of Parametric Radiation Force Models for Marine Structures at Zero Speed. Modeling, Identification and Control, Vol. 29, 1, pp. 1-19. Open source, http://www.mic-journal.no.
[Perez and Fossen, 2009]
Perez, T. and Fossen, T.I., 2009. A Matlab Toolbox for Parametric Identification of Radiation-Force Models of Ships and Offshore Structures. Modeling, Identification and Control, Vol. 30, 1, pp. 1-15. Open source, http://www.mic-journal.no.
[Perez and Revestido-Herrero, 2010]
Perez, T. and Revestido-Herrero, E. (2010). Structure selection in nonlinear Ship manoeuvring models. In: 8th IFAC CAMS2010, Conference on Control Applications in Marine Systems. Warnemnde (Rostock).
[Revestido-Herrero et al., 2012]
Revestido-Herrero, E., Velasco, J., López, El and Moyano, E., 2012. Diseño de Experimentos para la Estimación de Parámetros de Modelos de Maniobra Lineales de Buques. Revista Iberoamericana de Automática e Informática.
[Rueda et al., 2005]
Rueda, T.M., Velasco, F.J., Moyano, E., López, E. and de la Cruz, J.M., 2005. Application of a robust qft linear control method to the course changing manoeuvring of a ship. Journal of Maritime Research, Vol. 2, pp. 69-86.
[Santos et al., 2004]
Santos, M., López, R. and de la Cruz, J.M., 2004. Fuzzy control of the vertical acceleration of fast ferries. Control Engineering Practice, 13, pp. 305-313.
[SEAWAY, 2012]
SEAWAY, 2012. http://www.shipmotions.nl/DUT/Software/index.html.(acceso, marzo 2012).
[Sellars and Martin, 1992]
Sellars F.H. and Martin, J.P., 1992. Selection and evaluation ofship roll stabilization systems. SNAME, 29, 2, pp. 84-101.
[SN, 2001]
SNAME Transactions, 109, pp. 1-51. (2001).
[Sørensen, 2005]
Sørensen, A.J. (2005). Structural issues in the design and operation of marine control systems. Annual Reviews in Control, 29(1), pp. 125-149.
[Sørensen, 2011]
Sørensen, A.J. (2011). A survey of dynamic positioning control systems. Annual Reviews in Control, 35(1), pp. 123-136.
[Toussaint et al., 2000]
Toussaint, G.J., Basar, T., & Bullo, F. (2000). H∞-optimal tracking control techniques for nonlinear underactuated systems. IEEE Conf. Decision and Control. pp. 2078-2083.
[Van Amerongen and Udink Ten Cate, 1975]
Van Amerongen, J. and Udink Ten Cate, 1975. Model reference adaptive autopilots for ships Original Research Article Automatica, 11, 5, pp. 441-449.
[Van Amerongen, 1984]
Van Amerongen, J, 1984. Adaptive Steering of Ships-A Model Reference Approach. Automatica, 20, 1, pp. 3-14.
[Velasco et al., 2010]
Velasco, F.J., Revestido, E., López, E. and Moyano, E. (2010). Remote laboratory for marine vehicles experimentation. Computer Applications in Engineering Education. doi:10.1002/cae.20444.
[WAMIT, 2012]
WAMIT, 2012. http://www.wamit.com/.(acceso marzo 2012).
[Yoon and Rhee, 2003]
Yoon, H.K., and Rhee, K.P. 2003 Identification of hydrodynamic coefficients in ship maneuvering equations of motion by estimation-before-modeling technique, Ocean Engineering, 30, 2379-2404.
[Zhou and Blanke, 1987]
Zhou, W.W. and Blanke, M., 1987. Nonlinear Recursive Prediction Error Method Applied to Identification of Ship Steering Dynamics. Proceedings of 8th Ship Control Systems Symposium. The Hague, Oct. 1987.
[Zhou and Blanke, 1989]
Zhou, W.W. and Blanke, M. 1989. Identification of a class of nonlinear state- space models using RPE techniques, IEEE Transactions on Automatic Control, 34, 3, pp. 312-316.
Copyright © 2012. Elsevier España, S.L.. Todos los derechos reservados
Opciones de artículo