Los sistemas de levitación magnética pueden ser utilizados como dispositivos de posicionamiento de precisión. Además de ser estables en lazo abierto, las configuraciones de levitación repulsiva presentan características interesantes para este tipo de aplicaciones. No obstante, estas aplicaciones pueden presentar el fenómeno de atascamiento-deslizamiento debido las características no lineales de la fricción del objeto manipulado. La combinación de los altos niveles de no-linealidad en las fuerzas magnéticas y del atascamiento- deslizamiento resulta en un problema de control complejo. En este artículo se presenta la identificación y el análisis dinámico de un sistema de levitación magnética experimental. Los resultados de este estudio son utilizados para el diseño de un sistema de control no lineal basado en los principios de linealización por realimentación de estado. Otros investigadores han mostrado que este método de diseño es limitado debido a la incertidumbre introducida por la fricción. En el presente trabajo se propone mejorar el desempeño de un controlador de linealización por realimentación de estado incorporando un lazo de control externo con acción integral. Este lazo externo se diseña aplicando técnicas de control lineal en el dominio de la frecuencia. Los resultados experimentales muestran que al incluir el segundo lazo se obtienen mejores respuestas transitorias y menores errores en estado estacionario. Sin embargo, la interacción del efecto integral y la fuerza de fricción provocan un movimiento de atascamiento-deslizamiento, dando lugar a oscilaciones del tipo ciclo-límite sobre una superficie de deslizamiento. Estas oscilaciones son eliminadas a través de una estrategia de control conmutado basada en la caracterización experimental de la superficie de deslizamiento. El esquema de control resultante permite preservar un bajo error en estado estacionario y al mismo tiempo elimina las oscilaciones debidas al atascamiento-deslizamiento. Esto se logra a través de un controlador muy simple, en comparación con los propuestos en reportes previos. Los resultados experimentales muestran la efectividad del esquema propuesto.
Magnetic levitation systems can be used in many applications such as precise positioning. Repulsive configurations are open-loop stable and offer other interesting characteristics. However, these applications may present stick-slip effects due to the friction forces. The combination of the highly non-linear magnetic forces and the stick-slip effects result in a complex control problem. This article presents the identification, model analysis and control system design for an experimental repulsive magnetic levitation system. The design is based on the principles of state feedback linearization. In previous reports it was shown that the performance of feedback linearization control of similar devices is degraded by the parameter uncertainty introduced by the friction. In this work, the performance of the feedback linearization control is improved by adding an outer-loop linear controller with integral action. This controller was designed according to classical frequency analysis. Experimental results show better transient responses and low steady state errors. Nevertheless, the integral action and the friction force increase the stick-slip oscillations. Stick-slip motion is eliminated through a switching control strategy based on the experimental characterization of the stick-slip sliding surface. The resulting control scheme allows preserving the low steady state error of the integral control law and eliminates the stick-slip motion. This is accomplished through a relatively simple controller when compared with previous reports. Experimental results show the effectiveness of the proposed scheme.
Bachle et al., 2013, Canudas-de-Wit et al., 2014, Capozza et al., 2012, Dupont, 1994, Navarro-Lopez and Suarez, 2005, Faa-Jeng et al., 2009, Faa-Jeng et al., 2007a, Faa-Jeng et al., 2007b, Hajjaji and Ouladsine, 2001, Hung et al., 2003, Isidori, 1995, Ollervides et al., 2010, Joo and Seo, 1997, Kee-Bong et al., 2003, Kenfack-Jiotsa et al., 2012, Khalil, 2002, Kim et al., 2007, Lee et al., 2006, Lee et al., 2007, Liceaga-Castro et al., 2012, Licéaga-Castro et al., 2009, Lurie and Enright, 2011, Marin et al., 2012, Mizutanil et al., 2004, Moon, 1994, Motoharu et al., 2002, Nagaya and Ishikawa, 1995, Nguyen et al., 2009, Powell et al., 2008, Trisanto et al., 2006, Trumper et al., 1997 and Wei et al., 2012.