covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Control Robusto de Posición para un Sistema Mecánico Subactuado con Fricción ...
Información de la revista
Vol. 11. Núm. 3.
Páginas 275-284 (julio - septiembre 2014)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
3139
Vol. 11. Núm. 3.
Páginas 275-284 (julio - septiembre 2014)
Open Access
Control Robusto de Posición para un Sistema Mecánico Subactuado con Fricción y Holgura Elástica
Robust Position Control for a Mechanical System with Friction and an Elastic Backlash
Visitas
3139
Raúl Rascońa,
Autor para correspondencia
raul.rascon@uabc.edu.mx

Autor para correspondencia.
, Joaquín Álvarezb, Luis T. Aguilarc
a Universidad Autońoma de Baja California (UABC), Departamento de Ingeniería Aeroespacial, Blvd. Benito Juárez y Calle de la Normal S/N, 21280 Mexicali, México
b Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Departamento de Electrónica y Telecomunicaciones, Carretera Ensenada-Tijuana 3918, 22860 Ensenada, B.C., México
c Instituto Politécnico Nacional, CITEDI, avenida del parque 1310 Mesa de Otay 22510 Tijuana B.C., México
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

Se presenta una estrategia de control que combina las te¿cnicas de modos deslizantes y control H, para regular la posicio¿n de un sistema meca¿nico subactuado con friccio¿n y con una holgura ela¿stica. Se muestra que el sistema controlado tiene una regio¿n de puntos de equilibrio, donde las trayectorias del sistema en lazo cerrado convergen de manera asinto¿tica con un error de posicio¿n acotado en estado estacionario, incluso ante la presencia de cierto tipo de perturbaciones. La amplitud de dicho error puede reducirse mediante una sintonizacio¿n adecuada de los para¿metros del controlador. Adema¿s, el controlador atenu¿a el efecto de perturbaciones externas e incertidumbres en el modelado sobre la salida de la planta. La metodolog¿ıa es aplicada a una plataforma experimental, mostra¿ndose el buen desempen¿o del controlador propuesto.

Palabras clave:
sistemas mecánicos subactuados
control robusto
control por modos deslizantes
control H.
Abstract

It is presented a control strategy that combines the tech- niques of sliding mode control and nonlinear H control to solve the position control problem of an underactuated mechan- ical system with friction and an elastic backlash. It is shown that the controlled system has a set of equilibrium points, and all the closed-loop trajectories converge asymptotically to that set, achieving a minimally bounded steady state position error, in spite of the presence of certain types of disturbances. More- over, the controller attenuates the effect of external disturbances and uncertainties in the modeling of the plant. The controller has been implemented in an experimental platform that verifies the theoretical results.

Keywords:
Underactuated mechanical systems
robust control
sliding mode control
H control.
Referencias
[Acho et al., 2001]
Acho, L., Orlov, Y., Solis, V., 2001. Nonlinear measurement feedback H con- trol of time-periodic systems with application to tracking control of robot manipulators. International Journal of Control 74, 190-198.
[Adetola et al., 2009]
Adetola, V., DeHaan, D., Guay, M., 2009. Adaptive model predictive control for constrained nonlinear systems. Systems & Control Letters 58 (5), 320-326.
[Aguilar et al., 2003]
Aguilar, L., Orlov, Y., Acho, L., 2003. Nonlinear H control of nonsmooth time varying systems with application to friction mechanical manipulators. Automatica 39, 1531-1542.
[Anderson and Vreugdenhil, 1973]
Anderson, B., Vreugdenhil, R., 1973. Network analysis and synthesis. Engle- wood Cliffs, Prentice Hall, NJ.
[Branicky, 1998]
Branicky, M., 1998. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Transactions on Automatic Control 43, 475-482.
[Brogliato, 1999]
Brogliato, B., 1999. Nonsmooth Mechanics. Springer, London.
[Brogliato et al., 1997]
Brogliato, B., Niculescu, S.-I., Orhant, P., 1997. On the control of finite- dimensional mechanical systems with unilateral constraints. IEEE Trans- actions on Automatic Control 42 (2), 200-215.
[Castaños and Fridman, 2006]
Castaños, F., Fridman, L., 2006. Analysis and design of integral sliding mani- folds for systems with unmatched perturbations. IEEE Transactions on Au- tomatic Control 51 (5), 853-858.
[Castaños and Fridman, 2011]
Castaños, F., Fridman, L., 2011. Dynamic switching surfaces for output sliding mode control: An approach. Automatica 47 (9), 1957-1961.
[Chang and Lee, 1999]
Chang, Y.-C., Lee, C.-H., 1999. Robust tracking control for constrained robots actuated by dc motors without velocity measurements. IEE Proc. Control Theory and Applications 146 (2), 147-156.
[Chiu et al., 2004]
Chiu, C.-S., Lian, K.-Y., Wu, T.-C., 2004. Robust adaptive motion/force track- ing control design for uncertain constrained robot manipulators. Automatica 40 (12), 2111-2119.
[Christophersen, 2007]
Christophersen, F.J., 2007. Optimal control of constrained piecewise affine sys- tems. Lecture Notes in Control and Information Sciences. Springer Berlin Heidelberg.
[Doyle et al., 1989]
Doyle, J., Glover, K., Khargonekar, P., Francis, B., 1989. State space solutions to standard H2 and H control problems. IEEE Transactions on Automatic Control 34, 831-846.
[Ghafari-Kashani et al., 2010]
Ghafari-Kashani, A., Faiz, J., Yazdanpanah, M., 2010. Integration of non-linear H and sliding mode control techniques for motion control of a permanent magnet synchronous motor. IET Electric Power Applications 4 (4), 267-280.
[Isidori, 2000]
Isidori, A., 2000. A tool for semiglobal stabilization of uncertain non minimum- phase nonlinear systems via output feedback. IEEE Transactions on Auto- matic Control 48 (10), 1817-1827.
[Isidori and Astolfi, 1992]
Isidori, A., Astolfi, A., 1992. Disturbance attenuation and H-control via measurement feedback in nonlinear systems. IEEE Transactions on Automatic Control 37 (9), 1283-1293.
[Kazerooni, 1990]
Kazerooni, H., 1990. Contact instability of the direct drive robot when con- strained by a rigid environment. IEEE Transactions on Automatic Control 35, 710-714.
[Khalil, 2002]
Khalil, H., 2002. Nonlinear Systems. Prentice Hall, Upper Saddle River.
[Leine and Van de Wouw, 2010]
Leine, R.I., Van de Wouw, N., 2010. Stability and convergence of mechanical systems with unilateral constraints. Springer, Berlin.
[Lian and Zhao, 2010]
Lian, J., Zhao, J., 2010. Robust H-infinity integral sliding mode control for a class of uncertain switched nonlinear systems. Journal of Control Theory and Applications 8 (4), 521-526.
[Lian and Lin, 1998]
Lian, K.-Y., Lin, C.-R., 1998. Sliding-mode motion/force control of constrained robots. IEEE Transactions on Automatic Control 43 (8), 1101-1103.
[Mansard and Khatib, 2008]
Mansard, N., Khatib, O., 2008. Continuous control law from unilateral con- straint. IEEE International Conference on Robotics and Automation. ICRA 2008, 3359-3364.
[Menini and Tornambe, 2001]
Menini, L., Tornambe, A., 2001. Dynamic position feedback stabilisation of multidegrees-of-freedom linear mechanical systems subject to nonsmooth impacts. IEE Proceedings - Control Theory and Applications 148 (6), 488-496.
[Merzouki and M'Sirdi, 2004]
Merzouki, R., M'Sirdi, N., 2004. Compensation of friction and backlash effects in an electrical actuator. J. Systems and Control Engineering 218, 75-84.
[Paden and Sastry, 1987]
Paden, B., Sastry, S., 1987. A calculus for computing Filippov's differential inclusion with application to the variable structure control of robot manipulators. IEEE Transactions on Circuits and Systems 34, 73-81.
[Perez et al., 2010]
Perez, M., Jimenez, E., Camacho, E., april 2010. Design of an explicit con- strained predictive sliding mode controller. Control Theory & Applications, IET 4 (4), 552-562.
[Potini et al., 2006]
Potini, A., Tornambe, A., Menini, L., Abdallah, C., Dorato, P., 2006. Finite-time control of linear mechanical systems subject to non-smooth impacts. In: 14th Mediterranean Conference on Control and Automation, 2006.MED’06. pp. 1-5.
[Rascón et al., 2010]
Rascón, R., Alvarez, J., Aguilar, L., 2010. Feedback stabilization and force control using sliding modes in a mechanical system subject to unilateral constraints. In: 11th International Workshop on Variable Structure Systems (VSS). pp. 341-345.
[Rascón et al., 2012a]
Rascón, R., Alvarez, J., Aguilar, L., 2012a. Regulation and force control using sliding modes to reduce rebounds in a mechanical system subject to a uni- lateral constraint. Control Theory & Applications, IET 6 (18), 2785-2792.
[Rascón et al., 2012b]
Rascón, R., Alvarez, J., Aguilar, L., 2012b. Sliding mode control with H; attenuator for unmatched disturbances in a mechanical system with friction and a force constraint. In: 12th International Workshop on Variable Structure Systems (VSS). pp. 434-439.
[Rosas et al., 2007]
Rosas, D., Alvarez, J., Fridman, L., 2007. Robust observation and identification of ndof lagrangian systems. International Journal of Robust and Nonlinear Control 17, 842-861.
[Sabanovic et al., 2008]
Sabanovic, A., Elitas, M., Ohnishi, K., 2008. Sliding modes in constrained sys- tems control. IEEE Transactions on Industrial Electronics 55, 3332-3339.
[Shevitz and Paden, 1994]
Shevitz, D., Paden, B., 1994. Lyapunov stability theory of nonsmooth systems. IEEE Transactions on Automatic Control 39 (9), 1910-1914.
[Tseng, 2005]
Tseng, C.-S., 2005. Mixed H2/H adaptive tracking control design for uncer- tain constrained robots. Asian Journal of Control 7 (3), 296-309.
[Utkin, 1978]
Utkin, V., 1978. Sliding Modes and Their Applications. Mir, Moscow. Utkin, V., 1992. Sliding modes in control optimization. Springer, Berlín.
Copyright © 2013. EA
Descargar PDF
Opciones de artículo