covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Estimación simultánea de estado y parámetros para un sistema no lineal varian...
Información de la revista
Vol. 11. Núm. 3.
Páginas 263-274 (julio - septiembre 2014)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
2778
Vol. 11. Núm. 3.
Páginas 263-274 (julio - septiembre 2014)
Open Access
Estimación simultánea de estado y parámetros para un sistema no lineal variante en el tiempo
Simultaneous State and Parameter Estimation for a Non- linear Time-Varying System
Visitas
2778
Rodrigo A. Viveros
Autor para correspondencia
rodrigo.viverosa@alumnos.usm.cl

Autor para correspondencia.
, Juan I. Yuz, Ricardo R. Perez-Ibacache
Departamento de Electrónica, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

En el presente artículo se considera el problema de estimación de estado y parámetros variantes en el tiempo de un sistema no-lineal. Nuestro objetivo es comparar métodos usuales de estimación no lineal como el Filtro de Kalman Extendido y Filtro de Kalman Unscented con métodos desarrollados recientemente como el Filtro de Partículas. En particular, se muestra el uso de estas técnicas de estimación para un sistema no-lineal de cuatro depósitos acoplados, el cual posee bombas que presentan variabilidad debido a la temperatura y válvulas que pueden ser modificadas manualmente. Esta característica adicional dificulta la estimacio¿n de un modelo lineal invariante en el tiempo a partir de datos fuera de l¿ınea. Por ende, se considera el sistema como variante en el tiempo y se estima en l¿ınea simulta¿neamente el estado y algunos para¿metros del modelo a partir de datos experimentales. Adicionalmente se muestra la aplicacio¿n del algoritmo Esperanza-Maximizacio¿n Extendido para estimar las matrices de covarianza de los modelos de ruido necesarios para el filtraje no lineal. Los resultados obtenidos ilustran la aplicacio¿n de te¿cnicas avanzadas de estimacio¿n de estado y para¿metros a una planta de laboratorio.

Palabras clave:
Estimacio¿n de Para¿metros
Estimacio¿n de Estado
Filtro de Kalman Extendido
Filtro de Part¿ıculas
Filtro de Kalman Unscented
Abstract

In this article a state and parameter estimation problem of a nonlinear and time-varying system is considered. The aim is to compare usual methods of nonlinear estimation such as the Extended Kalman Filter and Unscented Kalman Filter with re- cent method such as the Particle Filter. In particular, these tech- niques are applied to a nonlinear four coupled tanks system, which has pumps that exhibit high variability due to temperatu- re changes and valves that can be manually changed. This ad- ditional feature makes difficult the estimation of a linear time- invariant model from off-line data. Hence, we consider the sys- tem as time-varying and we estimate the state and certain pa- rameters recursively from experimental data. Additionally, we show the application of the Extended Expectation-Maximization algorithm in order to estimate the noise covariance matrices of the models required in the nonlinear filters. The results illustra- te the application of advanced nonlinear filtering techniques for state and parameter estimation to a laboratory plant.

Keywords:
Parameter Estimation
State Estimation
Extended Kalman Filter
Unscented Kalman Filter
Particle Filter
Referencias
[Anderson and Moore, 1979]
Anderson, B.D. O., Moore, J., 1979. Optimal filtering. Prentice Hall, Engle- wood Cliffs, N.J.
[Arulampalam et al., 2002]
Arulampalam, M.S., Maskell, S., Gordon, N., 2002. A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Transactions on Signal Processing 50, 174-188.
[Åström, 1980]
Åström, K., 1980. Maximum likelihood and prediction error methods. Automa- tica 16 (5), 551-574.
[Åström and Bohlin, 1965]
Åström, K., Bohlin, T., 1965. Numerical identification of linear dynamic sys- tems from normal operating records. Theory of Self-adaptive Control Sys- tems; proceedings of the Second IFAC Symposium on the Theory of Self- adaptive Control Systems.
[Bavdekar et al., 2011]
Bavdekar, V.A., Deshpande, A.P., Patwardhan, S.C., 2011. Identification of process and measurement noise covariance for state and parameter estima- tion using extended Kalman filter. Journal of Process Control 21 (4), 585-601.
[Dempster et al., 1977]
Dempster, A.P., Laird, N.M., Rubin, D.B., 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical So- ciety, Series B 39 (1), 1-38.
[Doucet et al., 2001]
Doucet, A., de Freitas, N., Gordon, N., 2001. Sequential Monte Carlo methods in Practice. Springer.
[Doucet et al., 2000]
Doucet, A., Godsill, S., Andrieu, C., 2000. On sequential monte carlo sampling methods for bayesian filtering. Statistics and Computing 10 (3), 197-208.
[Doucet and Johansen, 2011]
Doucet, A., Johansen, A.M., 2011. A tutorial on particle filtering and smoot- hing: fifteen years later.
[Goodwin and Payne, 1977]
Goodwin, G.C., Payne, R., 1977. Dynamic system identification: Experiment design and data analysis. Academic Press.
[Gordon et al., 1993]
Gordon, N., Salmond, D., Smith, A., Apr. 1993. Novel approach to nonlinear/non-gaussian bayesian state estimation. IEE Proceedings 140.
[Guzman et al., 2010]
Guzman, J., Dom¿ınguez, M., Berenguel, M., Fuentes, J., Rodr¿ıguez, F., Regue- ra, P., 2010. Entornos de experimentacio¿n para la ensen¿anza de conceptos ba’icos de modelado y control. RIAII 7 (1).
[Hol et al., 2006]
Hol, J.D., Schon, T.B., Gustafsson, F., sept. 2006. On resampling algorithms for particle filters. En: Nonlinear Statistical Signal Processing Workshop, 2006 IEEE. pp. 79-82.
[Hu et al., 2011]
Hu, X.-L., Scho¿n, T.B., Ljung, L., 2011. A general convergence result for par- ticle filtering. IEEE Transactions on Signal Processing 59 (7), 3424-3429.
[Jazwinski, 1970]
Jazwinski, A.H., 1970. Stochastic Processes and Filtering Theory. Academic Press, San Diego, California.
[Jeff Wu, 1983]
Jeff Wu, C.F., 1983. On the Convergence Properties of the EM Algorithm. The Annals of Statistics 11 (1), 95-103.
[Johansson, 2000]
Johansson, K.H., May 2000. The quadruple-tank process: A multivariable la- boratory process with an adjustable zero. IEEE Transactions on Automatic Control 8 (3), 456-465.
[Julier et al., 2000]
Julier, S., Uhlmann, J., Durrant-Whyte, H.F., 2000. A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Transactions on Automatic Control 45 (3), 477-482.
[Julier and Uhlmann, 1997]
Julier, S.J., Uhlmann, J.K., 1997. A new extension of the kalman filter to nonlinear systems. En: SPIE AeroSense Symposium. Orlando, FL, pp. 182-193.
[Kalman, 1960]
Kalman, R.E., 1960. A new approach to linear filtering and prediction pro- blems. ASME J. Basic Eng. 82, 34-45.
[Kendall, 1998]
Kendall, M.G., 1998. Advanced Theory of Statistics: Classical Inference and the Linear Model. Vol. 2A. Arnold Publishers.
[Kitagawa, 1996]
Kitagawa, G., 1996. Monte Carlo filter and smoother for non-Gaussian nonli- near state space models. Journal of computational and graphical statistics 5 (1), 1-25.
[Kwakernaak and Sivan, 1972]
Kwakernaak, H., Sivan, R., 1972. Linear Optimal Control Systems. Wiley– Interscience, New York.
[McLachlan and Krishnan, 1997]
McLachlan, G.J., Krishnan, T., 1997. The EM Algorithm and Extensions. Wi- ley.
[McLachlan and Krishnan, 2008]
McLachlan, G.J., Krishnan, T., 2008. The EM Algorithm and Extensions (Wi- ley Series in Probability and Statistics). Wiley-Interscience.
[Rao, 1965]
Rao, C.R., 1965. Linear Statistical Inference and its Applications. Wiley, New York.
[Ristic et al., 2004]
Ristic, B., Arulampalam, S., Gordon, N., 2004. Beyond the Kalman Filter: Par- ticle Filters for Tracking Applications. Artech House.
[Shumway and Stoffer, 2000]
Shumway, R.H., Stoffer, D.S., 2000. Time Series Analysis and its applications. Springer Verlag New York Inc.
[Simon, 2006]
Simon, D., 2006. Optimal state Estimation. Kalman, H and Nonlinear Ap- proaches. A John Wiley sons, inc., Publication.
[Smith and Gelfand, 1992]
Smith, A., Gelfand, A., 1992. Bayesian statistics without tears: A sampling- resampling perspective. The American Statistical Association.
[Söderström and Stoica, 1989]
Söderström, T., Stoica, P., 1989. System Identification. Prentice Hall.
Copyright © 2013. EA
Descargar PDF
Opciones de artículo