covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Control predictivo para seguimiento de sistemas no lineales. Aplicación a una p...
Información de la revista
Vol. 10. Núm. 1.
Páginas 18-29 (enero - marzo 2013)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
5433
Vol. 10. Núm. 1.
Páginas 18-29 (enero - marzo 2013)
Artículo
Open Access
Control predictivo para seguimiento de sistemas no lineales. Aplicación a una planta piloto
MPC for tracking of constrained nonlinear systems. Application to a pilot plant
Visitas
5433
A. Ferramoscaa,b,
Autor para correspondencia
ferramosca@santafe-conicet.gov.ar

Autor para correspondencia.
, J.K. Gruberc, D. Limonb, E.F. Camachob
a Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), CONICET-Universidad Nacional del Litoral (UNL). Güemes 3450, 3000 Santa Fe, Argentina
b Departamento de Ingeniería de Sistemas y Automática, Escuela Superior de Ingenieros, Universidad de Sevilla. Camino de los Descubrimientos s/n., 41092 Sevilla, España
c Unidad de Procesos Eléctricos, Instituto IMDEA Energía. Avda. Ramón de la Sagra, 3, 28935 Móstoles, Madrid, España
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

Este artículo trata el problema del diseño de un controlador predictivo para seguimiento de referencias cambiantes, en el caso de sistemas no lineales. Los controladores predictivos proveen leyes de control adecuadas para regular sistemas lineales o no lineales a un punto de equilibrio dado garantizando la satisfacción de restricciones y la estabilidad asintótica. Pero si este punto de equilibrio cambia, el controlador podría perder la estabilidad o incluso la factibilidad y por lo tanto sería incapaz de seguir la referencia deseada. En (Ferramosca et al., 2009a) se ha propuesto un controlador predictivo para seguimiento de referencias capaz de garantizar factibilidad y convergencia al punto de equilibrio a pesar de los cambios que este pueda sufrir. En este artículo, este controlador se utiliza para controlar en tiempo real una planta piloto de procesos. Los resultados obtenidos demuestran que el controlador predictivo para seguimiento es capaz de controlar plantas con dinámicas no lineales y restricciones. El experimento demuestra cómo el controlador garantiza estabilidad, factibilidad y convergencia también en caso de referencias no alcanzables.

Palabras clave:
Control predictivo
seguimiento de referencia
estabilidad
sistemas no lineales
Abstract

This paper deals with the tracking problem for constrained nonlinear systems using a model predictive control (MPC) law. MPC provides a control law suitable for regulating constrained linear and nonlinear systems to a given target steady state. However, when the target operating point changes, the feasibility of the controller may be lost and the controller fails to track the reference. Recently, a novel MPC for tracking constrained nonlinear systems has been presented (Ferramosca et al., 2009a). This is capable to steer the system to any reference, even in the case of changing references. In this paper, this controller is used for the real-time control of a chemical pilot plant. The obtained experimental results demonstrate that the MPC for tracking is suitable for the control of plants with nonlinear dynamics since it ensures stability and offset-free convergence in case of large changes in the reference even using short prediction horizons. Besides, in case of unreachable set points, the controller steers the system to the closest reachable equilibrium point.

Keywords:
Model predictive control
setpoint tracking
stability
nonlinear systems
Referencias
[Bemporad et al., 1997]
A. Bemporad, A. Casavola, E. Mosca.
Nonlinear control of constrained linear systems via predictive reference management.
IEEE Transactions on Automatic Control, 42 (1997), pp. 340-349
[Boyd and Vandenberghe, 2006]
S. Boyd, L. Vandenberghe.
Convex Optimization.
Cambridge University, (2006),
[Camacho and Bordons, 2004]
Camacho, E.F., Bordons, C., 2004. Model Predictive Control, 2a Edición. Springer-Verlag.
[Chisci and Zappa, 2003]
L. Chisci, G. Zappa.
Dual mode predictive tracking of piecewise constant references for constrained linear systems.
International Journal of Control, 76 (2003), pp. 61-72
[Cueli and Bordons, 2008]
J.R. Cueli, C. Bordons.
Iterative nonlinear model predictive control Stability, robustness and applications.
Control Engineering Practice, 16 (2008), pp. 1023-1034
[Ferramosca, 2011]
Ferramosca, A., 2011. Model predictive control for systems with changing setpoints. Tesis doctoral, Universidad de Sevilla, http://fondosdigitales.us.es/tesis/autores/1537/.
[Ferramosca et al., 2009a]
Ferramosca, A., Limon, D., Alvarado, I., Alamo, T., Camacho, E.F., 2009a. MPC for tracking constrained nonlinear systems. En: Proceedings of the 48th IEEE Conference on Decision and Control. Shanghai, China.
[Ferramosca et al., 2009b]
A. Ferramosca, D. Limon, I. Alvarado, T. Alamo, E.F. Camacho.
MPC for tracking with optimal closed-loop performance.
Automatica, 45 (2009), pp. 1975-1978
[Ferramosca et al., 2011]
A. Ferramosca, D. Limon, I. Alvarado, T. Alamo, F. Castaño, E.F. Camacho.
Optimal MPC for tracking of constrained linear systems.
Int. J. of Systems Science, 42 (2011), pp. 1265-1276
[Ferramosca et al., 2010]
A. Ferramosca, D. Limon, A.H. González, D. Odloak, E.F. Camacho.
MPC for tracking zone regions.
Journal of Process Control, 20 (2010), pp. 506-516
[Findeisen et al., 2000]
Findeisen, R., Chen, H., Allgöwer, F., 2000. Nonlinear predictive control for setpoint families. En: Proceedings of the 2000 American Control Conference. Chicago, Illinois.
[Gilbert et al., 1995]
E.G. Gilbert, I. Kolmanovsky, K.T. Tan.
Discrete time reference governors and the nonlinear control of systems with state and control constraints.
International Journal of Robust and Nonlinear Control, 5 (1995), pp. 487-504
[Gruber, 2010]
Gruber, J.K., 2010. Efficient and robust techniques for predictive control of nonlinear processes. Tesis doctoral, Universidad de Sevilla, https://www.educacion.es/teseo/imprimirFicheroTesis.do?fichero=17446.
[Gruber and Bordons, 2007]
J.K. Gruber, C. Bordons.
Control predictivo no lineal basado en modelos de Volterra Aplicación a una planta piloto.
Revista Iberoamericana de Automática e Informática Industrial, 4 (2007), pp. 34-45
[Gruber and Bordons, 2008]
J.K. Gruber, C. Bordons.
Control predictivo mín-máx de una planta piloto.
Revista Iberoamericana de Automática e Informática Industrial, 5 (2008), pp. 37-47
[Gruber et al., 2009]
J.K. Gruber, D.R. Ramirez, T. Alamo, C. Bordons, E.F. Camacho.
Control of a pilot plant using QP based min-max predictive control.
Control Engineering Practice, 17 (2009), pp. 1358-1366
[Hu and Linnemann, 2002]
B. Hu, A. Linnemann.
Towards infinite-horizon optimality in nonlinear model predictive control.
IEEE Transactions on Automatic Control, 47 (2002), pp. 679-682
[Lee et al., 2000]
J.H. Lee, K.S. Lee, W.C. Kim.
Model-based iterative learning control with a quadratic criterion for time-varying linear systems.
Automatica, 36 (2000), pp. 641-657
[Limon et al., 2008]
D. Limon, I. Alvarado, T. Alamo, E.F. Camacho.
MPC for tracking of piecewise constant references for constrained linear systems.
Automatica, 44 (2008), pp. 2382-2387
[Limon et al., 2010]
D. Limon, I. Alvarado, T. Alamo, E.F. Camacho.
Robust tube-based MPC for tracking of constrained linear systems with additive disturbances.
Journal of Process Control, 20 (2010), pp. 248-260
[Magni et al., 2001]
L. Magni, G. De Nicolao, L. Magnani, R. Scattolini.
A stabilizing model-based predictive control algorithm for nonlinear systems.
Automatica, 37 (2001), pp. 1351-1362
[Magni et al., 2002]
L. Magni, G. De Nicolao, R. Scattolini.
On robust tracking with nonlinear model predictive control.
International Journal of Control, 75 (2002), pp. 399-407
[Magni and Scattolini, 2005]
L. Magni, R. Scattolini.
On the solution of the tracking problem for nonlinear systems with MPC.
International Journal of Systems Science, 36 (2005), pp. 477-484
[Mayne et al., 2000]
D.Q. Mayne, J.B. Rawlings, C.V. Rao, P.O.M. Scokaert.
Constrained model predictive control: Stability and optimality.
Automatica, 36 (2000), pp. 789-814
[Muske and Rawlings, 1993]
K.R. Muske, J.B. Rawlings.
Model predictive control with linear models.
AIChE Journal, 39 (1993), pp. 262-287
[Ortega and Rubio, 2004]
M.G. Ortega, F.R. Rubio.
Systematic design of weighting matrices for the H1 mixed sensitivity problem.
Journal of Process Control, 14 (2004), pp. 89-98
[Pannocchia, 2004]
G. Pannocchia.
Robust model predictive control with guaranteed setpoint tracking.
Journal of Process Control, 14 (2004), pp. 927-937
[Pannocchia and Kerrigan, 2005]
G. Pannocchia, E.C. Kerrigan.
Offset-free receding horizon control of constrained linear systems.
AIChE Journal, 51 (2005), pp. 3134-3146
[Ramirez et al., 2004]
D.R. Ramirez, E.F. Camacho, M.R. Arahal.
Implementation of minmax MPC using hinging hyperplanes Application to a heat exchanger.
Control Engineering Practice, 12 (2004), pp. 1197-1205
[Ramirez et al., 1999]
Ramirez, D.R., Limon, D., Ortega, J.G., Camacho, E.F., 1999. Model based predictive control using genetic algorithms. Application to a pilot plant. En: Proceedings of the 1999 European Control Conference. Karlsruhe, Alemania.
[Rao and Rawlings, 1999]
C.V. Rao, J.B. Rawlings.
Steady states and constraints in model predictive control.
AIChE Journal, 45 (1999), pp. 1266-1278
[Rawlings and Mayne, 2009]
Rawlings, J.B., Mayne, D.Q., 2009. Model Predictive Control: Theory and Design, 1a Edición. Nob-Hill Publishing.
[Rossiter et al., 1996]
J.A. Rossiter, B. Kouvaritakis, J.R. Gossner.
Guaranteeing feasibility in constrained stable generalized predictive control.
IEE Proceedings Control Theory & Applications, 143 (1996), pp. 463-469
[Santos et al., 2001]
L.O. Santos, P.A.F.N.A. Afonso, J.A.A.M. Castro, N.M.C. Oliveira, L.T. Biegler.
On-line implementation of nonlinear MPC: an experimental case study.
Control Engineering Practice, 9 (2001), pp. 847-857
[Szeifert et al., 1995]
F. Szeifert, T. Chovan, L. Nagy.
Process dynamics and temperature control of fed-batch reactors.
Computers & Chemical Engineering, 19 (1995), pp. 447-452
Copyright © 2012. CEA
Descargar PDF
Opciones de artículo