covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Estabilización del Péndulo Invertido Sobre Dos Ruedas mediante el método de L...
Información de la revista
Vol. 10. Núm. 1.
Páginas 30-36 (enero - marzo 2013)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
7513
Vol. 10. Núm. 1.
Páginas 30-36 (enero - marzo 2013)
Artículo
Open Access
Estabilización del Péndulo Invertido Sobre Dos Ruedas mediante el método de Lyapunov
Stabilization of the Two Wheels Inverted Pendulum by means Lyapunov approach
Visitas
7513
O. Octavio Gutiérrez Frías
Autor para correspondencia
ogutierrezf@ipn.mx

Autor para correspondencia.
UPIITA-Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2580, Barrio La Laguna Ticomán, GAM, 07340 México D.F., México
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

En este trabajo, se presenta un controlador no lineal para estabilizar el sistema Péndulo Invertido Sobre Dos Ruedas. Como primera etapa la estrategia de control, se basa en una linealización parcial por realimentación, para posteriormente proponer una función candidata de Lyapunov en combinación con el principio de invariancia de LaSalle con el fin de obtener el controlador esta- bilizador. El sistema en lazo cerrado obtenido es asintóticamente estable localmente alrededor del punto de equilibrio inestable, con un dominio de atracción calculable.

Palabras clave:
Sistema Subactuado
Péndulo Invertido Sobre Dos Ruedas
Método de Lyapunov
Control No Lineal
Abstract

In this paper, a nonlinear controller is presented for the stabilization of the two wheels inverted pendulum. The control strategy is based on partial feedback linealization, in first stage and then a suitable function Lyapunov in conjunction with LaSalle's invariance principle is formed to obtain a stabilizing feedback controller. The obtained closed-loop system is locally asymptotically stable around its unstable equilibrium point, with a computable domain of attraction.

Keywords:
Under Actuated System
Two Wheels Inverted Pendulum
Lyapunov Approach
Non-Linear Control
Referencias
[Aguilar-Ibañez et al., 2005]
C. Aguilar-Ibañez, O. Gutiérrez-Frías, M. Suárez.
Lyapunov-Based Controller for the Inverted Pendulum Cart System.
Nonlinear Dynamics, 40 (2005), pp. 367-374
[Aguilar-Ibañez and Gutiérrez-Frías, 2008]
C. Aguilar-Ibañez, O. Gutiérrez-Frías.
A simple model matching for the stabilization of an inverted pendulum cart system.
International Journal of Robust and Nonlinear Control, 18 (2008), pp. 688-699
[Åström and Furuta, 2000]
K.J. Åström, K. Furuta.
Swinging up a pendulum by energy control.
Automatica, 26 (2000), pp. 287-295
[Baloh and Parent, 2003]
Baloh, M., Parent, M., 2003. Modeling and model verification of an intelligent self-balancing two-wheeled vehicle for an autonomous urban transportation system. In: The Conference on Computational Intelligence, Robotics, and Autonomous Systems,. Singapore.
[Bloch et al., 2000]
A.M. Bloch, N.E. Leonard, J. Marsden.
Controlled lagrangians and the stabilization of mechanical systems i. the first matching theorem.
IEEE Transactions on Automatic Control, 45 (2000), pp. 2253-2270
[Do and Seet, 2010]
K.D. Do, G. Seet.
Motion control of a two-wheeled mobile vehicle with an inverted pendulum.
Journal of Intelligent & Robotic Systems, 60 (2010), pp. 577-605
[Grasser et al., 2002]
F. Grasser, A. D’Arrigo, S. Colombi, A.C. Rufer.
Joe: A mobile, inverted pendulum.
IEEE Transactions on Industrial Electronics, 49 (2002), pp. 107-114
[Huang et al., 2010]
J. Huang, Zhi-Hong Guan, T. Matsuno, T. Fukuda, K. Sekiyama.
Sliding-mode velocity control of mobile-wheeled inverted-pendulum systems.
IEEE Transactions on robotics, 26 (2010), pp. 750-758
[Jeong and Takahashi, 2008]
S. Jeong, T. Takahashi.
Wheeled inverted pendulum type assistant robot: design concept and mobile control.
Intelligent Service Robotics, 1 (2008), pp. 313-320
[Kalra et al., 2007]
Kalra, S., Patel, D., Stol, K., 2007. Design and hybrid control of a two wheeled robotic plataform. In: Proceedings 2007 Australasian Conference on Robotics and Automation. Brisbane, Australia.
[Kim et al., 2005]
Y. Kim, S.H. Kim, Y.K. Kwak.
Dynamic analysis of a nonholonomic two-wheeled inverted pendulum robot.
Journal of Intelligent and Robotic Systems, 44 (2005), pp. 25-46
[Khalil, 2002]
Khalil, H.K., 2002. Nonlinear Systems,Prentice Hall.
[Lozano et al., 2000]
R. Lozano, I. Fantoni, D.J. Block.
Stabilization on the inverted pendulum around its homoclinic orbit.
System & Control letters, 40 (2000), pp. 197-204
[Nawawi et al., 2008]
S.W. Nawawi, M.N. Ahmad, J.H.S. Osman.
Real-time control of a two-wheeled inverted pendulum mobile robot.
International Journal of Computer and Information Engineering, 2 (2008), pp. 70-76
[Noh et al., 2010]
J.S. Noh, G.H. Lee, S. Jung.
Position control of a mobile inverted pendulum system using radial basis function network.
International Journal of Control, Automation, and Systems, 8 (2010), pp. 157-162
[Pathak et al., 2005]
K. Pathak, J. Franch, S.K. Agrawal.
Velocity and position control of a wheeled inverted pendulum by partial feedback linearization.
IEEE Transactions on robotics, 21 (2005), pp. 505-513
[Ren et al., 2008]
T.-J. Ren, T.-C. Chen, C.-J. Chen.
Motion control for a two-wheeled vehicle using a self-tuning pid controller.
Control Engineering Practice, 16 (2008), pp. 365-375
[Rugh, 1996]
Rugh, W.J., 1996. Linear System Theory,Prentice Hall.
[Salerno and Angeles, 2003]
Salerno, A., Angeles, J., 2003. On the nonlinear controllability of a quasiholonomic mobile robot. In: Proceedings of IEEE International Conference on Robotics and Automation. Vol. 3. Taipei, Taiwan, pp. 3379-3967.
[Segway, 2011]
Segway Inc., http://www.segway.com/, 2011.
[Shiriaev et al., 2004]
A. Shiriaev, H. Ludvigsen, O. Egeland.
Swinging up the spherical pendulum via stabilization of its first integrals.
Automatica, 40 (2004), pp. 73-85
[Spong, 1996]
Spong, M.W., 1996. Energy based control of a class of underactuated mechanical system. In: Proc. 13th IFAC World Congress. San Francisco, CA., pp. 431-435.
[Vermeiren et al., 2011]
L. Vermeiren, A. Dequidt, T.M. Guerra, H. Rago-Tirmant, M. Parent.
Modeling, control and experimental verification on a two-wheeled vehicle with free inclination:an urban transportation system.
Control Engineering Practice, 19 (2011), pp. 744-756
[Viguria et al., 2006]
A. Viguria, A. Prieto, M. Fiacchini, R. Cano, F.R. Rubio, J. Aracil, C. Canudas de Wit.
Desarrollo y experimentación de un vehículo basado en péndulo invertido (ppcar).
Revista iberoamericana de automática e informática industrial (RIAI), 3 (2006), pp. 54-63
[Yamamoto, 2009]
Yamamoto, Y., NXTway-GS Model-Based Design Control of selfbalancing two-wheeled robot built with LEGO Mindstorms NXT, http://www.mathworks.com/matlabcentral/fileexchange/19147, 2009.009.
Copyright © 2011. CEA
Descargar PDF
Opciones de artículo