covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Identificación de sistemas en lazo cerrado basada en una estrategia híbrida AG...
Información de la revista
Vol. 10. Núm. 1.
Páginas 37-49 (enero - marzo 2013)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
5712
Vol. 10. Núm. 1.
Páginas 37-49 (enero - marzo 2013)
Artículo
Open Access
Identificación de sistemas en lazo cerrado basada en una estrategia híbrida AGA-Simplex
Close-loop system identification based on an AGA-Simplex hybrid strategy
Visitas
5712
R.F. Tanda
Autor para correspondencia
tanda@icimaf.cu

Autor para correspondencia.
, A. Aguado
Departamento de Control Automático, Instituto de Cibernética, Matemática y Física (ICIMAF), C.P. 10400, La Habana, Cuba
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

La identificación de sistemas continuos en lazo cerrado, que puede ser enfocada como un problema de optimización no lineal, puede resultar de difícil solución mediante métodos convencionales. En este artículo se presenta una estrategia híbrida basada en un Algoritmo Genético Adaptable y el método Simplex, que resulta en una solución satisfactoria para dicho problema. Se compara la propuesta con otras técnicas reportadas en la literatura. Tres ejemplos exponen el desempeño del método: identificación de una dinámica de orden elevado; identificación de una dinámica de segundo orden inestable en lazo abierto; y estimación de parámetros en sistemas de generación eléctrica. Los resultados de simulación muestran que la propuesta es un método robusto para la identificación de sistemas en lazo cerrado.

Palabras clave:
Algoritmos de optimización
Algoritmos Genéticos
Estimación de parámetros
Identificación en lazo cerrado
Abstract

Closed-loop identification of continuous systems, which can be considered as a nonlinear optimization problem, may result in a difficult solution problem when conventional methods are used. In this paper it is presented a hybrid strategy based on an Adaptive Genetic Algorithm and the Simplex method, that results in a satisfactory solution for this problem. The proposal is compared with other techniques reported in the literature. Three examples show the performance of the method: identification of high order dynamics; identification of unstable second order dynamics in open-loop; and parameter estimation in power generation systems. Simulation results show that the proposed is a robust method for close-loop system identification.

Keywords:
Optimization algorithms
Genetic Algorithms
Parameter estimation
Closed-loop identification
Referencias
[Aguado and Cipriano, 2009]
A. Aguado, A. Cipriano.
Identificación en lazo cerrado y ajuste de reguladores mediante Algoritmos Genéticos.
Revista Iberoamericana de Automática e Informática Industrial, 6 (2009), pp. 20-30
[Alfaro, 2003]
V.M. Alfaro.
Identificación de procesos sobreamortiguados utilizando técnicas de lazo abierto y lazo cerrado.
Epiciclos, 2 (2003), pp. 9-30
[Aliprantis et al., 2006]
D.C. Aliprantis, S. Sudhoff, B. Kuhn.
Genetic algorithm based param-eter identification of a Hysteretic Brushless Exciter Model.
IEEE Trans. Energy Conversion, 21 (2006), pp. 148-154
[Ananth and Chidambaram, 1999]
Ananth, I. and Chidambaram, M., 1999. Closed-loop identification of transfer function model for unstable systems. Tech. Rep. TR-336, J. Franklin Institute, 1055-1061.
[Åström and Hägglund, 1984]
K.J. Åström, T. Hägglund.
Automatic tuning of simple regulators with specifications on phase and amplitude margins.
Automatica, 20 (1984), pp. 645-651
[Åström and Hägglund, 2006]
Åström, K.J. and Hägglund, T., 2006. Advanced PID Control. Research Triangle Park: Instrumentation, Systems, and Automation Society, Ch. 3, pp. 67-97.
[Back, 1996]
T. Back.
Evolutionary Algorithms in Theory and Practice.
Oxford University Press, (1996),
[Baker, 1987]
E. Baker.
Reducing bias and inefficiency in the selection algorithms.
In: Proc. Second International Conference on GA, 1 (1987), pp. 14-21
[de Barros Fontes et al., 2012]
de Barros Fontes, A., Sobrinho, M., Lima, J., 2012. New Method of ClosedLoop Identification of FOPDT and SOPDT Models Considering the Padé Zero Influence. In: Proc. 16th IFAC Symposium on SYSID, Brussels, Belgium, July 11-13.
[Boza et al., 2005]
Boza, J., Aguado, A., Gómez, A., Pérez, F., 2005. Identificación de los parámetros de los sistemas de excitación de los generadores sincrónicos del SEN. In: Proc. 9CHLIE, Marbella, Spain, June 30-July 2.
[Butcher, 2002]
J.C. Butcher.
The A-stability of methods with Padé and generalized Padé stability functions.
Numerical Algorithms, 31 (2002), pp. 47-58
[Cao et al., 2012]
Cao, L.T., Jin, Q.B., Fan, T.S., Su, W., 2012. On-Line Identification of Process Model Based on Swarm Intelligence Technology. Advanced Materi-als Research 403-408, 3216-3219.
[Chen, 1989]
C.L. Chen.
A simple meted for on-line identification and controller tuning.
AIChE Journal, 35 (1989), pp. 2037-2039
[Cong et al., 2010]
Cong, S., Li, G., Feng, X., 2010. Parameters identification of nonlinear DC Motor model using compound Evolutions Algorithms. In: Proc. World Congress on Engineer 1, London, UK, June 30-July 02.
[Forssell and Ljung, 1999]
U. Forssell, L. Ljung.
Closed-loop identification revisited.
Automatica, 35 (1999), pp. 1215-1241
[Goldberg, 1989]
Goldberg, E., 1989. Genetic Algorithms in search optimization and machine learning, Addison-Wesley.
[Granado et al., 2004]
E. Granado, E. Mata, S. Revollar, W. Colmenares, O. Pérez.
Study about system identification for second order process: an open and closedloop improvement.
Ingeniería UC, 11 (2004), pp. 41-47
[Han and de Callafon, 2011]
Han, Y. and de Callafon, R.A., 2011. Closed-loop Identification of Hammerstein Systems Using Iterative Instrumental Variables. In: Proc. 18th IFAC World Congress, Milano, Italy, August 28-September 2.
[Haro, 2008]
E. Haro.
Estimación de parámetros físicos de un automóvil.
Revista Iberoamericana de Automática e Informática Industrial, 5 (2008), pp. 28-35
[Ho et al., 1995]
W.K. Ho, C.C. Hang, L.S. Cao.
Tuning PID controllers based on gain and phase margin specifications.
Automatica, 31 (1995), pp. 497-502
[Holland, 1975]
Holland, J.H., 1975. Adaptation in natural and artificial systems, Ann Arbor, The University of Michigan Press.
[IEEE, 1992]
IEEE, 1992. Recommended Practice for Excitation System Models for Power Systems Stability Studies. IEEE Power Engineering Society, IEEE Standard 421.5.
[Jorgensen and Lee, 2001]
Jorgensen, S.B. and Lee, J.H., 2001. Recent Advances and Challenges in Process Identification. In: Proc. Chemical Process Control VI, Arizona, USA, January 8.
[Jutan and Rodríguez, 1984]
A. Jutan, E.S. Rodríguez.
Extension of a new method for on-line controller tuning.
The Canadian Journal of Chemical Engineers, 62 (1984), pp. 802-807
[Landau and Karimi, 1999]
I.D. Landau, A. Karimi.
A recursive algorithm for ARMAX model identification in closed-loop.
IEEE Trans. on Automatic Control, 44 (1999), pp. 840-843
[Lee and Sung, 1993]
J. Lee, S.W. Sung.
Comparison of two identification methods for PID controller tuning.
AIChE Journal, 39 (1993), pp. 695-697
[Lee, 1989]
J. Lee.
On-line PID controller tuning from a single close-loop test.
AIChE Journal, 35 (1989), pp. 329-331
[Ljung and Forssell, 1999]
L. Ljung, U. Forssell.
An alternative motivation for the indirect approach to closed-loop identification.
IEEE Trans. on Automatic Control, 44 (1999), pp. 2206-2209
[Mathews and Fink, 2004]
Mathews, J.H. and Fink, K.K., 2004. Numerical Methods using Matlab, Prentice-Hall Int., New Jersey, USA, Ch. 8, pp. 430-436.
[Michalewicz, 1996]
Michalewicz, Z., 1996. Genetic Algorithms + Data Structures = Evolution Program, Springer series Artificial Intelligence, Springer.
[Mikleš and Fikar, 2007]
Mikleš, J. and Fikar, M., 2007. Process Modelling, Identification, and Control, Springer-Verlag, Berlin Heidelberg, Ch. 6, pp. 230-233.
[Mitchell, 1999]
Mitchell, M., 1999. An Introduction to Genetic Algorithms, A Bradford Book The MIT Press, Massachusetts Institute of Technology, England.
[Mohamed and Radhi, 2005]
O.M. Mohamed, M. Radhi.
Using Genetic Algorithms in closedloop identification of the systems with variable structure controller.
In: Proc. Word Academy of Sciences, Engineering and Technology, 7 (2005), pp. 1307-1311
[Muhlenbein and Schlierkamp, 1993]
H. Muhlenbein, V. Schlierkamp.
Predictive models for the breeder Genetic Algorithm I. continuous parameter optimization.
Evolutionary Computation, 1 (1993), pp. 25-49
[Nelder and Mead, 1965]
J.A. Nelder, R. Mead.
A simplex method for function minimization.
Computer Journal, 7 (1965), pp. 308-313
[Ogata, 1997]
Ogata, K., 1997. Modern Control Engineering, Pearson-Prentice Hall Int., Ch. 4, pp. 141-160.
[Parikh et al., 2012]
Parikh, N.N., Patwardhan, S.C., Gudi, R.D., 2012. Closed-loop Identification of Quadruple Tank System using an Improved Indirect Approach. In: Proc. 8th IFAC Symposium on Advanced Control of Chemical Processes, Furama Riverfront, Singapore, July 10-13.
[Pasadyn et al., 1999]
A.J. Pasadyn, S.J. Qin, S. Valle-Cervantes.
Closed-loop and openloop identification of an industrial wastewater reactor.
In: Proc. American Control Conference, 6 (1999), pp. 3965-3969
[Pouliquen et al., 2012]
Pouliquen, M., Gehan, O., Pigeon, E., Frikel, M., 2012. Closed-loop output error identification with bounded disturbances. In: Proc. 16th IFAC Symposium on SYSID, Brussels, Belgium, July 11-13.
[Pramod and Chidambaram, 2000]
S. Pramod, M. Chidambaram.
Closed-loop identification of transfer function model for unstable bioreactors for tuning PID controllers.
Bioprocess and Biosystems Engineering, 22 (2000), pp. 185-188
[Rajinikanth and Latha, 2009]
Rajinikanth, V. and Latha, K., 2009. Integrating and unstable process model estimation with relay feedback. In: Proc. International Conference on Modeling and Simulation, 225-228, India, December 1-3.
[Rajinikanth and Latha, 2010]
V. Rajinikanth, K. Latha.
Identification and Control of Unstable Biochemical Reactor.
International Journal of Chemical Engineering and Applications, 1 (2010), pp. 106-111
[Rivera et al., 1986]
D.E. Rivera, M. Morari, S. Skogestad.
Internal Model Control 4.
PID controller design. Ind. Eng. Chem. Res., 25 (1986), pp. 252-265
[Shardt and Huang, 2011]
Shardt, Y. and Huang, B., 2011. Closed-Loop Identification using Routine Operating Data: the Effect of Time Delay. In: Proc. 18th IFAC World Congress, Milano, Italy, August 28-September 2.
[Skogestad, 2003]
S. Skogestad.
Simple analytic rules for model reduction and PID controller tuning.
Journal of Process Control, 13 (2003), pp. 291-309
[Spendley et al., 1962]
W. Spendley, G.R. Hext, F.R. Himsworth.
Sequential application of simplex design in optimization and evolutionary operation.
Technometrics, 4 (1962), pp. 441-461
[Strejc, 1959]
Strejc, V., 1959. Näherungsverfahren für Aperiodische Übertragscharacteristiken. Regelungstechnik 7(7), 124-128.(in Czech).
[Sun and Zhu, 2012]
Sun, L. and Zhu, Y., 2012. New Closed-Loop Identification Approach Based on Output Over-Sampling Scheme. In: Proc. of 16th IFAC Symposium on SYSID, Brussels, Belgium, July 11-13.
[Tanda and Aguado, 2012]
R.F. Tanda, A. Aguado.
Estrategia híbrida AGA-Simplex para la estimación de parámetros de modelos dinámicos a partir de la respuesta al escalón.
Investigación Operacional, 33 (2012), pp. 193-209
[Tóth et al., 2012]
Tóth, R., Laurain, V., Gilson, M., Garnier, H., 2012. Instrumental variable scheme for closed-loop LPV model identification. Automatica.(Available on-line 7 July).
[Tufa et al., 2010]
L.D. Tufa, M. Ramasamy, M. Shuhaimi.
Closed-loop system identification using OBF-ARMAX model.
Journal of Applied Sciences, 10 (2010), pp. 3175-3182
[Van den Hof, 1998]
P. Van den Hof.
Closed-loop issues in system identification.
Annual Reviews in Control, 22 (1998), pp. 173-186
[Whorton, 2004]
Whorton, M.S., 2004. Closed-loop system identification with Genetic Algorithms. In: Proc. AIAA Guidance, Navigation and Control Conference and Exhibit, Rhode Island, USA, August 16-19.
[Wu et al., 2012]
Wu, C., Lu, C., Han, Y., 2012. Closed-Loop Identification of Power System Based on Ambient Data. Mathematical Problems in Engineering, Volume 2012, Article ID 632897, 16 pp.
[Yuan et al., 1996]
Y. Yuan, L. Chuan, S. Tain.
Experience with identification and tuning of excitation system parameters at the second nuclear plant of Taiwan Power Company.
IEEE Trans. on Power Systems, 11 (1996), pp. 747-753
[Yuwana and Seborg, 1982]
M. Yuwana, D.E. Seborg.
A new method for on-line controller tuning.
AIChE Journal, 28 (1982), pp. 434-440
[Zheng, 1996]
W.X. Zheng.
Identification of closed-loop systems with low-order controllers.
Automatica, 32 (1996), pp. 1753-1757
[Zhu, 2003]
Zhu, Y., 2003. New development in industrial MPC identification. In: Proc. International Symposium on Advanced Control of Chemical Processes, Hong Kong, China.
[Ziegler and Nichols, 1942]
J.B. Ziegler, N.B. Nichols.
Optimum settings for automatic controls.
Trans. ASME, 64 (1942), pp. 759-768
Copyright © 2012. CEA
Descargar PDF
Opciones de artículo