covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Un algoritmo secuencial, aleatorio y óptimo para problemas de factibilidad robu...
Información de la revista
Vol. 10. Núm. 1.
Páginas 50-61 (enero - marzo 2013)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
4065
Vol. 10. Núm. 1.
Páginas 50-61 (enero - marzo 2013)
Artículo
Open Access
Un algoritmo secuencial, aleatorio y óptimo para problemas de factibilidad robusta
A sequentially optimal randomized algorithm for robust feasibility problems
Visitas
4065
T. Álamoa,
Autor para correspondencia
alamo@cartuja.us.es

Autor para correspondencia.
, R. Tempob, D.R. Ramíreza, A. Luquea, E.F. Camachoa
a Dpto. Ingeniería de Sistemas y Automática, Escuela Técnica Superior de Ingenieros, Universidad de Sevilla, Camino Descubrimientos, s/n., 41092 Sevilla, España
b IEIIT-CNR, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

En este trabajo (del cual se presentó una versión preliminar en Alamo et al. (2007)) se propone un algoritmo aleatorio para determinar la factibilidad robusta de un conjunto de desigualdades lineales matriciales (Linear Matrix Inequalities, LMI). El algoritmo está basado en la solución de una secuencia de problemas de optimización semidefinida sujetos a un bajo número de restricciones. Se aporta además una cota superior del número máximo de iteraciones que requiere el algoritmo para resolver el problema de factibilidad robusta. Finalmente, los resultados se ilustran mediante un ejemplo numérico.

Palabras clave:
Factibilidad robusta
desigualdades lineales matriciales
algoritmos aleatorios
control robusto
Abstract

This paper proposes a randomized algorithm for feasibility of uncertain LMIs. The algorithm is based on the solution of a sequence of semidefinite optimization problems involving a reduced number of constraints. A bound of the maximum number of iterations required by the algorithm is given. Finally, the performance and behaviour of the algorithm are illustrated by means of a numerical example.

Keywords:
Robust feasibility linear matrix inequalities randomized algorithms robust control
Referencias
[Alamo et al., 2009]
T. Alamo, R. Tempo, E. Camacho.
Randomized strategies for probabilistic solutions of uncertain feasibility and optimization problems.
Automatic Control, IEEE Transactions on, 54 (2009), pp. 2545-2559
[Alamo et al., 2008]
T. Alamo, R. Tempo, D. Ramírez, E. Camacho.
A new vertex result for robustness problems with interval matrix uncertainty.
Systems and Control Letters, 57 (2008), pp. 474-481
[Alamo et al., 2007]
Alamo, T., Tempo, R., Ramirez, D.R., Camacho, E.F., 2007. A sequentially optimal randomized algorithm for robust lmi feasibility problems. In: Proceedings of the European Control Conference. Kos, Greece.
[Apkarian et al., 1995]
Apkarian, P., Gahinet, P., Becker, G., 1995. Self-scheduled H control of linear parameter-varying systems: a design example. Automatica 31 (9), 1251-1261. DOI: DOI: 10.1016/0005-1098(95)00038-X.
[Apkarian and Tuan, 2000]
Apkarian, P., Tuan, H.D., 2000. Parameterized lmis in control theory. SIAM Journal on Control and Optimization 38 (4), 1241-1264. DOI: 10.1137/S036301299732612X.
[Barmish, 1994]
Barmish, B., 1994. New Tools for Robustness of Linear Systems. MacMillan Publishing Company, New York, USA.
[Barmish and Scherbakov, 2000]
Barmish, B., Scherbakov, P., December 2000. On avoiding vertexization of robustness problems: The approximate feasibility concept. In: Proceedings of the 39th IEEE Conference on Decision and Control. Sydney, Australia, pp. 1031-1036.
[Becker and Packard, 1994]
Becker, G., Packard, A., 1994. Robust performance of linear parametrically varying systems using parametrically-dependent linear feedback. Systems and Control Letters 23 (3), 205-215. DOI: 10.1016/0167-6911(94)90006-X.
[Ben-Tal and Nemirovski, 2001]
Ben-Tal, A., Nemirovski, A., 2001. Lectures on Modern Convex Optimization. Analysis, Algorithms, and Engineering Applications. MPS/SIAM Series on Optimization, Philadelphia, PA.
[Boyd et al., 1994]
Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V., 1994. Linear Matrix Inequalities in Systems and Control Theory. SIAM, Philadelphia, PA.
[Calafiore and Campi, 2006]
G. Calafiore, M. Campi.
The scenario approach to robust control design.
IEEE Transactions on Automatic Control, 51 (2006), pp. 742-753
[Calafiore and Dabbene, 2007]
G. Calafiore, F. Dabbene.
A probabilistic analytic center cutting plane method for feasibility of uncertain LMIs.
Automatica, 43 (2007), pp. 2022-2033
[Calafiore et al., 2007]
G. Calafiore, F. Dabbene, R. Tempo.
A survey of randomized algorithms for control synthesis and performance verification.
Journal of Complexity, 23 (2007), pp. 301-316
[Calafiore and Polyak, 2001]
G. Calafiore, B. Polyak.
Stochastic algorithms for exact and approximate feasibility of robust LMIs.
IEEE Transactions on Automatic Control, 46 (2001), pp. 1755-1759
[Calafiore et al., 2011]
G.C. Calafiore, F. Dabbene, R. Tempo.
Research on probabilistic methods for control system design.
Automatica, 47 (2011), pp. 1279-1293
[Feron et al., 1996]
E. Feron, P. Apkarian, P. Gahinet.
Analysis and synthesis of robust control systems via parameter-dependent lyapunov functions.
Automatic Control, IEEE Transactions on, 41 (1996), pp. 1041-1046
[Fujisaki et al., 2003]
Y. Fujisaki, F. Dabbene, R. Tempo.
Probabilistic design of lpv control systems.
Automatica, 39 (2003), pp. 1323-1337
[Kanev et al., 2003]
S. Kanev, B.D. Schutter, M. Verhaegen.
An ellipsoid algorithm for probabilistic robust controller design.
Systems and Control Letters, 49 (2003), pp. 365-375
[Liberzon and Tempo, 2004]
D. Liberzon, R. Tempo.
Common Lyapunov functions and gradient algorithms.
IEEE Transactions on Automatic Control, 49 (2004), pp. 990-994
[Nemirovskii, 1993]
A. Nemirovskii.
Several NP-hard problems arising in robust stability analysis.
Mathematics of Control, Signal and Systems, 6 (1993), pp. 99-105
[Oishi, 2003]
Oishi, Y., December 2003. Probabilistic design of a robust state-feedback controller based on parameter-dependent Lyapunov functions. In: Proceedings of the 42nd IEEE Conference on Decision and Control. Maui, Hawaii USA, pp. 1920-1925.
[Polyak and Tempo, 2001]
B. Polyak, R. Tempo.
Probabilistic robust design with linear quadratic regulators.
Systems and Control Letters, 43 (2001), pp. 343-353
[Scokaert et al., 1999]
P.O.M Scokaert, D.Q. Mayne, J.B. Rawlings.
Suboptimal model predictive control (feasibility implies stability).
IEEE Transactions on Automatic Control, 44 (1999), pp. 648-654
[Tempo et al., 2005]
Tempo, R., Calafiore, G., Dabbene, F., 2005. Randomized Algorithms for Analysis and Control of Uncertain Systems. Communications and Control Engineering Series. Springer-Verlag, London.
[Tuan et al., 2001]
Tuan, H., Apkarian, P., Nguyen, T., dec 2001. Robust and reduced-order filtering: new lmi-based characterizations and methods. Signal Processing, IEEE Transactions on 49 (12), 2975-2984. DOI: 10.1109/78.969506.
[Wan and Kothare, 2002]
Z. Wan, M. Kothare.
Robust output feedback model predictive control using o_-line linear matrix inequalities.
Journal of Process Control, 12 (2002), pp. 763-774
[Zhou et al., 1996]
Zhou, K., Doyle, J., Glover, K., 1996. Robust and Optimal Control. Prentice Hall, Englewood Cliff, NJ.
Copyright © 2011. CEA
Descargar PDF
Opciones de artículo