[Alamo et al., 2009]T. Alamo, R. Tempo, E. Camacho.
Randomized strategies for probabilistic solutions of uncertain feasibility and optimization problems.
Automatic Control, IEEE Transactions on, 54 (2009), pp. 2545-2559
[Alamo et al., 2008]T. Alamo, R. Tempo, D. Ramírez, E. Camacho.
A new vertex result for robustness problems with interval matrix uncertainty.
Systems and Control Letters, 57 (2008), pp. 474-481
[Alamo et al., 2007]Alamo, T., Tempo, R., Ramirez, D.R., Camacho, E.F., 2007. A sequentially optimal randomized algorithm for robust lmi feasibility problems. In: Proceedings of the European Control Conference. Kos, Greece.
[Apkarian et al., 1995]Apkarian, P., Gahinet, P., Becker, G., 1995. Self-scheduled H∞ control of linear parameter-varying systems: a design example. Automatica 31 (9), 1251-1261. DOI: DOI: 10.1016/0005-1098(95)00038-X.
[Apkarian and Tuan, 2000]Apkarian, P., Tuan, H.D., 2000. Parameterized lmis in control theory. SIAM Journal on Control and Optimization 38 (4), 1241-1264. DOI: 10.1137/S036301299732612X.
[Barmish, 1994]Barmish, B., 1994. New Tools for Robustness of Linear Systems. MacMillan Publishing Company, New York, USA.
[Barmish and Scherbakov, 2000]Barmish, B., Scherbakov, P., December 2000. On avoiding vertexization of robustness problems: The approximate feasibility concept. In: Proceedings of the 39th IEEE Conference on Decision and Control. Sydney, Australia, pp. 1031-1036.
[Becker and Packard, 1994]Becker, G., Packard, A., 1994. Robust performance of linear parametrically varying systems using parametrically-dependent linear feedback. Systems and Control Letters 23 (3), 205-215. DOI: 10.1016/0167-6911(94)90006-X.
[Ben-Tal and Nemirovski, 2001]Ben-Tal, A., Nemirovski, A., 2001. Lectures on Modern Convex Optimization. Analysis, Algorithms, and Engineering Applications. MPS/SIAM Series on Optimization, Philadelphia, PA.
[Boyd et al., 1994]Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V., 1994. Linear Matrix Inequalities in Systems and Control Theory. SIAM, Philadelphia, PA.
[Calafiore and Campi, 2006]G. Calafiore, M. Campi.
The scenario approach to robust control design.
IEEE Transactions on Automatic Control, 51 (2006), pp. 742-753
[Calafiore and Dabbene, 2007]G. Calafiore, F. Dabbene.
A probabilistic analytic center cutting plane method for feasibility of uncertain LMIs.
Automatica, 43 (2007), pp. 2022-2033
[Calafiore et al., 2007]G. Calafiore, F. Dabbene, R. Tempo.
A survey of randomized algorithms for control synthesis and performance verification.
Journal of Complexity, 23 (2007), pp. 301-316
[Calafiore and Polyak, 2001]G. Calafiore, B. Polyak.
Stochastic algorithms for exact and approximate feasibility of robust LMIs.
IEEE Transactions on Automatic Control, 46 (2001), pp. 1755-1759
[Calafiore et al., 2011]G.C. Calafiore, F. Dabbene, R. Tempo.
Research on probabilistic methods for control system design.
Automatica, 47 (2011), pp. 1279-1293
[Feron et al., 1996]E. Feron, P. Apkarian, P. Gahinet.
Analysis and synthesis of robust control systems via parameter-dependent lyapunov functions.
Automatic Control, IEEE Transactions on, 41 (1996), pp. 1041-1046
[Fujisaki et al., 2003]Y. Fujisaki, F. Dabbene, R. Tempo.
Probabilistic design of lpv control systems.
Automatica, 39 (2003), pp. 1323-1337
[Kanev et al., 2003]S. Kanev, B.D. Schutter, M. Verhaegen.
An ellipsoid algorithm for probabilistic robust controller design.
Systems and Control Letters, 49 (2003), pp. 365-375
[Liberzon and Tempo, 2004]D. Liberzon, R. Tempo.
Common Lyapunov functions and gradient algorithms.
IEEE Transactions on Automatic Control, 49 (2004), pp. 990-994
[Nemirovskii, 1993]A. Nemirovskii.
Several NP-hard problems arising in robust stability analysis.
Mathematics of Control, Signal and Systems, 6 (1993), pp. 99-105
[Oishi, 2003]Oishi, Y., December 2003. Probabilistic design of a robust state-feedback controller based on parameter-dependent Lyapunov functions. In: Proceedings of the 42nd IEEE Conference on Decision and Control. Maui, Hawaii USA, pp. 1920-1925.
[Polyak and Tempo, 2001]B. Polyak, R. Tempo.
Probabilistic robust design with linear quadratic regulators.
Systems and Control Letters, 43 (2001), pp. 343-353
[Scokaert et al., 1999]P.O.M Scokaert, D.Q. Mayne, J.B. Rawlings.
Suboptimal model predictive control (feasibility implies stability).
IEEE Transactions on Automatic Control, 44 (1999), pp. 648-654
[Tempo et al., 2005]Tempo, R., Calafiore, G., Dabbene, F., 2005. Randomized Algorithms for Analysis and Control of Uncertain Systems. Communications and Control Engineering Series. Springer-Verlag, London.
[Tuan et al., 2001]Tuan, H., Apkarian, P., Nguyen, T., dec 2001. Robust and reduced-order filtering: new lmi-based characterizations and methods. Signal Processing, IEEE Transactions on 49 (12), 2975-2984. DOI: 10.1109/78.969506.
[Wan and Kothare, 2002]Z. Wan, M. Kothare.
Robust output feedback model predictive control using o_-line linear matrix inequalities.
Journal of Process Control, 12 (2002), pp. 763-774
[Zhou et al., 1996]Zhou, K., Doyle, J., Glover, K., 1996. Robust and Optimal Control. Prentice Hall, Englewood Cliff, NJ.