covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Control predictor con ponderación de retardos: análisis de prestaciones y robu...
Información de la revista
Vol. 11. Núm. 2.
Páginas 155-166 (abril - julio 2014)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
3315
Vol. 11. Núm. 2.
Páginas 155-166 (abril - julio 2014)
Open Access
Control predictor con ponderación de retardos: análisis de prestaciones y robustez ante retardo variable
Weighted-delay predictor-based control: performance and robustness analysis with time-varying delay
Visitas
3315
Antonio Gonzáleza,
Autor para correspondencia
angonsor@gmail.com

Autor para correspondencia.
, Antonio Salab
a Université de Valenciennes et du Hainaut-Cambrésis, LAMIH (UMR CNRS 8201), Le Mont Houy, 59313 Valenciennes Cedex 9, Francia
b Instituto de Automática e Informática Industrial, Universitat Politècnica de Valencia, Cno. Vera s/n, E-46022 Valencia, España
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

Los controladores basados en predictor, en particular los obtenidos por métodos de asignación finita de espectro (también conocido como método de reducción), permiten abordar el control por realimentación del estado de sistemas con retardos constantes y conocidos a partir de un modelo equivalente transformado sin retardo. Sin embargo, si el retardo es variable o existen incertidumbres en el modelo del proceso no es posible compensar su efecto de forma exacta. Este trabajo propone utilizar un predictor con múltiples retardos ponderados, con unos pesos a determinar según un algoritmo iterativo. Con ello se probará que, dado un controlador ya diseñado para un proceso sin retardo, la estructura ponderada propuesta consigue mejores prestaciones y robustez que los predictores de horizonte único.

Palabras clave:
Retardo variable con el tiempo
Asignación Finita de Espectro
Método de reducción
Desigualdad matricial lineal
Abstract

Predictor-based controllers, in particular those obtained by Finite Spectrum Assignment (a.k.a. reduction) method, allow controlling systems with constant and known delays by using an equivalent delay-free model. However, if delay is time-varying or there exist uncertainties in the process model, delay e_ects cannot be exactly compensated. This work proposes a multiple weighted-delay predictor, where the weighting coe_cients are computed by an iterative algorithm. Then, it will be proved that, given a pre-existing controller designed for some delayfree process, the proposed scheme achieves better robustness and performance than single-horizon predictors.

Keywords:
Time-varying delay
Finite Spectrum Assignment
reduction method
Linear matrix inequality
Referencias
[Artstein, 1982]
Z. Artstein.
Linear systems with delayed control: A reduction.
IEEE Transactions on Automatic Control, 27 (1982), pp. 869-879
[Boukas, 2006]
Boukas, E., 2006. Discrete-time systems with time-varying time delay: stability and stabilizability. Mathematical Problems in Engineering 2006.
[Caballero and Grossmann, 2007]
J. Caballero, I. Grossmann.
Una revisión del estado del arte en optimización.
Revista Iberoamericana de Automática e Informática Industrial, 4 (2007), pp. 5-23
[De Souza et al., 1988]
C. De Souza, G. Goodwin, D. Mayne, M. Palaniswami.
An adaptive control algorithm for linear systems having unknown time delay.
Automatica, 24 (1988), pp. 327-341
[Di Palma and Magni, 2004]
F. Di Palma, L. Magni.
A multi-model structure for model predictive control.
Annual Reviews in Control, 28 (2004), pp. 47-52
[Du et al., 2008]
D. Du, B. Jiang, S. Zhou.
Delay-dependent robust stabilisation of uncertain discrete-time switched systems with time-varying state delay.
International Journal of Systems Science, 39 (2008), pp. 305-313
[Gao and Chen, 2007]
H. Gao, T. Chen.
New results on stability of discrete-time systems with time-varying state delay.
IEEE Transactions on Automatic Control, 52 (2007), pp. 328-334
[Gao et al., 2008]
H. Gao, T. Chen, J. Lam.
A new delay system approach to networkbased control.
Automatica, 44 (2008), pp. 39-52
[Gao et al., 2004]
H. Gao, J. Lam, C. Wang, Y. Wang.
Delay-dependent output-feedback stabilisation of discrete-time systems with time-varying state delay.
IEE Proceedings Control Theory and Applications, 151 (2004), pp. 691
[Garcia et al., 1989]
C. Garcia, D.M. Prett, M. Morari.
Model predictive control: theory and practice - a survey.
Automatica, 25 (1989), pp. 335-348
[Garcia et al., 2006]
Garcia, P., Castillo, P., Lozano, R., Albertos, P., 2006. Robustness with respect to delay uncertainties of a predictor observer based discrete-time controller. In: Proceedings of the 45th IEEE Conference on Decision and Control.
[Gonzalez et al., 2012a]
A. Gonzalez, P. Garcia, P. Albertos, P. Castillo, R. Lozano.
Robustness of a discrete-time predictor-based controller for time-varying measurement delay.
Control Engineering Practice, 20 (2012), pp. 102-110
[Gonzalez et al., 2012b]
A. Gonzalez, A. Sala, P. Albertos.
Predictor-based stabilization of discrete time-varying input-delay systems.
Automatica, 48 (2012), pp. 454-457
[Gonzalez et al., 2013a]
A. Gonzalez, A. Sala, P. Garcia, P. Albertos.
Robustness analysis of discrete predictor-based controllers for input-delay systems.
International Journal of System Science, 44 (2013), pp. 232-239
[Gonzalez et al., 2013b]
A. Gonzalez, A. Sala, R. Sanchis.
LK stability analysis of predictorbased controllers for discrete-time systems with time-varying actuator delay.
System & Control Letters, 62 (2013), pp. 764-769
[Goodwin and Sin, 1984]
G. Goodwin, K. Sin.
Adaptive Filtering Prediction and Control.
Prentice-Hall, (1984),
[Guangdeng et al., 2009]
Guangdeng, Z., Linlin, H., Hongyong, Y., 2009. Further results concerning delay-dependent H control for uncertain discrete-time systems with timevarying delay. Mathematical Problems in Engineering 2009.
[Hagglund, 1996]
T. Hagglund.
An industrial dead-time compensating PI controller.
Control Engineering Practice, 4 (1996), pp. 749-756
[Hetel et al., 2008]
L. Hetel, J. Daafouz, C. Iung.
Equivalence between the Lyapunov- Krasovskii functionals approach for discrete delay systems and that of the stability conditions for switched systems.
Nonlinear Analysis: Hybrid Systems, 2 (2008), pp. 697-705
[Liu et al., 2006]
X. Liu, R. Martin, M. Wu, M. Tang.
Delay-dependent robust stabilisation of discrete-time systems with time-varying delay.
IEE Proceedings Control Theory and Applications, 153 (2006), pp. 689
[Lozano et al., 2004]
R. Lozano, P. Castillo, P. Garcia, A. Dzul.
Robust prediction-based control for unstable delay systems: Application to the yaw control of a minihelicopter.
Automatica, 40 (2004), pp. 603-612
[Manitius and Olbrot, 1979]
A. Manitius, A. Olbrot.
Finite spectrum assignment problem for systems with delays.
IEEE Transactions on Automatic Control, 24 (1979), pp. 541-552
[Mao and Chu, 2009]
W. Mao, J. Chu.
D-stability and d-stabilization of linear discrete timedelay systems with polytopic uncertainties.
Automatica, 45 (2009), pp. 842-846
[Mart¿ınez et al., 2006]
M. Mart¿ınez, J. Sanchis, X. Blasco.
Algoritmos genéticos aplicados al diseño de controladores robustos.
Revista Iberoamericana de Automática e Informática Industrial, 3 (2006), pp. 39-51
[Michiels and Niculescu, 2003]
W. Michiels, S. Niculescu.
On the delay sensitivity of Smith predictors.
International Journal of Systems Science, 34 (2003), pp. 543-551
[Nilsson, 1998]
Nilsson, J., 1998. Real-time control systems with delays. Ph.D. dissertation, department of Automatic Control, Lund, Sweden: Lund Institute of Technology.
[Normey-Rico and Camacho, 2007]
Normey-Rico, J., Camacho, E., 2007. Control of dead-time processes. Springer Verlag.
[Normey-Rico and Camacho, 2009]
J. Normey-Rico, E. Camacho.
Unified approach for robust dead-time compensator design.
Journal of Process Control, 19 (2009), pp. 38-47
[Normey-Rico et al., 2012]
J. Normey-Rico, P. Garcia, A. Gonzalez.
Robust stability analysis of filtered smith predictor for time-varying delay processes.
Journal of Process Control, 22 (2012), pp. 1975-1984
[Oliveira et al., 2009]
V. Oliveira, L. Cossi, M. Teixeira, A. Silva.
Synthesis of pid controllers for a class of time delay systems.
Automatica, 45 (2009), pp. 1778-1782
[Palmor, 1996]
Z. Palmor.
Time-delay compensation smith predictor and its modifications.
The Control Handbook, 1 (1996), pp. 224-229
[Pan et al., 2006]
Y. Pan, H. Marquez, T. Chen.
Stabilization of remote control systems with unknown time varying delays by LMI techniques.
International Journal of Control, 79 (2006), pp. 752-763
[Peng et al., 2004]
Peng, C., Yue, D., Sun, J., 2004. The study of Smith prediction controller in NCS based on time-delay identification. In: Control, Automation, Robotics and Vision Conference, 2004. ICARCV 2004 8th. Vol. 3. IEEE, pp. 1644-1648.
[Richard, 2003]
J. Richard.
Time-delay systems: an overview of some recent advances and open problems.
Automatica, 39 (2003), pp. 1667-1694
[Salt et al., 2008]
J. Salt, V. Casanova, A. Cuenca, R. Pizá.
Sistemas de control basados en red modelado y diseño de estructuras de control.
Revista Iberoamericana de Automática e Informática Industrial, 5 (2008), pp. 5-20
[Silva et al., 2005]
Silva, G., Datta, A., Bhattacharyya, S., 2005. PID controllers for time-delay systems. Birkhauser, Boston.
[Smith, 1957]
O. Smith.
Closer Control of loops with dead time.
Chemical Engineering Progress, 53 (1957), pp. 217-219
[Valter et al., 2008]
Valter, J. et al., 2008. Robust stabilization of discrete-time systems with timevarying delay: an LMI approach. Mathematical Problems in Engineering 2008.
[Wang et al., 1998]
Wang, Q., Lee, T., Tan, K., 1998. Finite spectrum assignment for time-delay systems. Springer Verlag.
[Yong et al., 2008]
H. Yong, W. Min, H. Qinglong, S. Jinhua.
Delay-dependent H control of linear discrete-time systems with an interval-like time-varying delay.
International Journal of Systems Science, 39 (2008), pp. 427-436
[Yue and Han, 2005]
D. Yue, Q. Han.
Delayed feedback control of uncertain systems with time-varying input delay.
Automatica, 41 (2005), pp. 233-240
[Zhang et al., 2008]
B. Zhang, S. Xu, Y. Zou.
Improved stability criterion and its applications in delayed controller design for discrete-time systems.
Automatica, 44 (2008), pp. 2963-2967
[Zhong, 2006]
Q. Zhong.
Robust control of time-delay systems.
Springer Verlag, (2006),
Copyright © 2012. EA
Descargar PDF
Opciones de artículo