covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Control de Tracción en Robots Móviles con Ruedas
Información de la revista
Vol. 9. Núm. 4.
Páginas 393-405 (octubre - diciembre 2012)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
6889
Vol. 9. Núm. 4.
Páginas 393-405 (octubre - diciembre 2012)
Open Access
Control de Tracción en Robots Móviles con Ruedas
Traction Control for Wheeled Mobile Robots
Visitas
6889
R. Fernándeza,
Autor para correspondencia
roemi.fernandez@car.upm-csic.es

Autors para correspondencia.
, R. Aracilb,
Autor para correspondencia
rafael.aracil@car.upm-csic.es

Autors para correspondencia.
, M. Armadaa,
Autor para correspondencia
manuel.armada@car.upm-csic.es

Autors para correspondencia.
a Centro de Automá tica y Robótica CSIC-UPM, Ctra. Campo Real, Km. 0,200, La Poveda, Arganda del Rey, 28500, Madrid, España
b Universidad Politécnica de Madrid, Centro de Automática y Robótica UPM-CSIC, C/José Gutiérrez Abascal, no 2, 28006, Madrid, España
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

En este trabajo se presenta una solución para mejorar el rendimiento de los robots móviles con ruedas que se desplacen sobre superficies con un bajo coeficiente de fricción estática. En estas circunstancias, los robots móviles con ruedas pueden experimentar pérdidas de tracción, y por tanto, sufrir deslizamientos a lo largo de la superficie. La solución descrita propone la utilización de una configuración especial para el robot móvil, en la que todas las ruedas son accionadas de forma independiente, y una estructura de control que consta de tres partes bien diferenciadas: un controlador de seguimiento con realimentación de estado basado en el modelo cinemático del robot, una extensión de la ley de control cinemático resultante para incorporar la dinámica del robot móvil utilizando backstepping, y un algoritmo de distribución de la fuerza de tracción global, que calcula las señales de referencia adecuadas para cada una de las ruedas. Con esta estructura se consigue controlar la posición y la velocidad del robot móvil, y al mismo tiempo, distribuir la fuerza de tracción global entre las ruedas, evitando así el deslizamiento del robot. El funcionamiento de los algoritmos de control es evaluado mediante pruebas experimentales.

Palabras clave:
robots móviles
distribución de la fuerza de tracción global
control no lineal
deslizamientos
superficies con bajo coeficiente de fricción estática
Abstract

This article presents a solution to improve the performance of wheeled mobile robots that move upon surfaces with small coefficient of static friction. In these circumstances the wheeled mobile robots can experience loss of traction and therefore, slide along the surface. The proposed solution implies the use of a special configuration for the mobile robot, in which all the wheels are driven independently, and a control structure which consists of three distinct parts: firstly, a state-feedback tracking controller based on the kinematic model of the mobile robot is derived. Secondly, an extension of the kinematic control law is made to incorporate the dynamics of the wheeled mobile robot via backstepping. Thirdly, a traction force distribution algorithm that calculates the proper reference signals for each rear wheel is included and the feedback tracking control laws are finally completed. With this solution is possible to control the position and the velocity of the wheeled mobile robot but, at the same time, to distribute the traction force between the wheels in such a way that their sliding is avoided. The effectiveness and usefulness of the designed control algorithms are demonstrated in laboratory experiments using a prototype of the wheeled mobile robot.

Keywords:
Wheeled mobile robots
traction force distribution
nonlineal control
slide
static friction coefficient
Referencias
[Anwar, 2003]
S. Anwar.
Brake based vehicle traction control via generalized predictive algorithm.
SAE Transactions Journal of Passenger Cars: Mechanical Systems, 112 (2003), pp. 296-303
[Balaram, 2000]
J. Balaram.
Kinematic state estimation for a mars rover.
Robotica, 18 (2000), pp. 251-262
[Boh et al., 2010]
Boh, T., Bradbeer, R. S., Hodgson, P., 2010. Terramechanics based traction control of underwater wheeled robot. In: IEEE Oceans 2010. Sydney, Australia, pp. 1-3.
[Byrnes and Isidori, 1989]
C. Byrnes, A. Isidori.
New results and examples in nonlinear feedback stabilization.
Systems & Control Letters, 12 (1989), pp. 437-442
[Chen and Chu, 2010]
Chen, B., Chu, C., 2010. Fuzzy sliding mode control of traction control system for electric scooter. In: IEEE 2010 Seventh International Conference on Fuzzy Systems and knowledge Discovery (FSKD 2010). pp. 691-695.
[Chen et al., 2011]
Chen, G., Zong, C., Zhang, Q., He, L., 2011. The study of traction control system for omni-directional electric vehicle. In: IEEE 2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC). Jilin, China, pp. 1590-1593.
[Fierro and Lewis, 1997]
R. Fierro, F.L. Lewis.
Control of a nonholonomic mobile robot: Backstepping kinematics into dynamics.
Journal of Robotic Systems, 14 (1997), pp. 149-163
[Iagnemma and Dubowsky, 2004]
K. Iagnemma, S. Dubowsky.
Mobile Robot in Rough Terra: Estimation, Motion Planning, Control with Application to Planetary Rovers.
Springer, (2004),
[Jones and Stol et al., 2010]
Jones, D. R., Stol, K. A., 2010. Modelling and stability control of two-wheeled robots in low-traction environments. In: Australasian Conference on Robotics and Automation. Brisbane, Australia.
[Koditschek, 1987]
Koditschek, D. E., 1987. Adaptive techniques for mechanical systems. In: Proceedings of the 5th Yale Workshop on Adaptive Systems. New Haven, CT.
[Kokotović and Sussmann, 1989]
P. Kokotović, H. Sussmann.
A positive real condition for global stabilization of nonlinear systems.
Systems & Control Letters, 19 (1989), pp. 177-185
[Kokotović, 1991]
P.V. Kokotović.
The joy of feedback: Nonlinear and adaptive.
IEEE Control Systems Magazine, 12 (1991), pp. 7-17
[Lefer and Nijmeijer, 1999]
Lefer, E., Nijmeijer, H., 1999. Adaptive tracking control of nonholonomic systems: an example. In: Proceedings of the 38th IEEE Conference on Decision and Control. Phoenix, Arizona, USA, pp. 2094-2099.
[Lei et al., 2008]
Lei, Z., Cui, P., Ju, H., Peng, X., 2008. Traction control on loose soil for a redundantly actuated mobile robot. In: Xiong, C., Huang, Y., Xiong, Y., Liu, H. (Eds.), Intelligent Robotics and Applications. Vol. 5314 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 1155-1164.
[Liu et al., 2010]
Liu, Z., Shi, Y., Chen, H., Zhang, X., 2010. Modeling and simulation of fuzzy control to traction control system of the four-wheel-drive vehicle. In: IEEE 2010 2nd International Conference on Future Computer and Communication (ICFCC). Vol. 2. Wuhan, pp. 92-95.
[Ojeda and Borenstein, 2004]
L. Ojeda, J. Borenstein.
Methods for the reduction of odometry errors in over-constrained mobile robots.
Autonomous Robots, 16 (2004), pp. 273-286
[Saberi et al., 1990]
A. Saberi, P. Kokotović, H. Sussmann.
Global stabilization of partially linear composite systems.
SIAM Journal of Control and Optimization, 1990 (1990), pp. 1491-1503
[Sakai and Hori, 1999]
S. Sakai, S.H. Hori Y.
Motion control in an electric vehicle with four independently driven in-wheel motors.
IEEE/ASME Transactions on Mechatronics, 4 (1999), pp. 9-16
[Sontag and Sussmann, 1988]
E. Sontag, H. Sussmann.
Further comments on the stabilizability on the angular velocity of a rigid body.
Systems & Control Letters, 12 (1988), pp. 213-217
[Tsinias, 1989]
Tsinias, J., 1989. Sufficient Lyapunov-like conditions for stabilization. Mathe-matics of Control, Signals, and Systems 2, 343-357.
[Waldron and Abdallah, 2007]
Waldron, K. J., Abdallah, M. E., 2007. An optimal traction control scheme for off-road operation of robotic vehicles. IEEE/ASME Transactions on Mechatronics 12 (2), 126-133.
[Yoshida and Hamano, 2003]
Yoshida, K; Hamano, H. W. T., 2003. Slip-based traction control of a planetary rover. In: EXPERIMENTAL ROBOTICS VIII Volume 5. pp. 644-653.
Copyright © 2011. Elsevier España, S.L.. Todos los derechos reservados
Opciones de artículo