covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Ensamblaje automático de piezas con desviaciones dimensionales
Información de la revista
Vol. 9. Núm. 4.
Páginas 383-392 (octubre - diciembre 2012)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
4526
Vol. 9. Núm. 4.
Páginas 383-392 (octubre - diciembre 2012)
Open Access
Ensamblaje automático de piezas con desviaciones dimensionales
Automatic Assembly of Parts with Dimensional Variations
Visitas
4526
Javier Gámez García
Autor para correspondencia
jggarcia@ujaen.es

Autor para correspondencia.
, Alejandro Sánchez García, Silvia Satorres Martínez, Juan Gómez Ortega
Grupo de Robótica, Automá tica y Visión por Computador de la Universidad de Jaén, 23071 Jaén, España
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

Dentro de la automatización del proceso de ensamblaje de piezas, de cara a obtener un producto final que cumpla con unas expectativas dimensionales, existe una problemática asociada cuando los elementos a ensamblar presentan variaciones geométricas dimensionales apreciables. Estos errores dimensionales de los componentes pueden suponer unos sobre costes de producción al desechar el producto final obtenido por no cumplir las especificaciones, e incluso un deterioro de la imagen de la empresa fabricante. La contribución de este trabajo consiste en el desarrollo de una nueva metodología para el ensamblaje de piezas con desviaciones dimensionales. Se propone un sistema automático que compense dinámicamente la posición de los componentes a ensamblar, es decir, que mida durante el ensamblaje las dimensiones de las piezas y ajuste las posiciones de éstas, dentro del rango de movimiento permitido, para que al ensamblarse se consiga un producto final que cumpla las dimensiones requeridas en su conjunto.

Para la validación experimental se ha desarrollado un prototipo de máquina de ensamblaje de faros de vehículo el cual ha sido implantado y validado en una línea de producción industrial. De esta forma se ha demostrado, a nivel de empresa, que la metodología propuesta presenta una mejora de su competitividad ya que reduce notablemente el número de productos finales defectuosos motivados por las desviaciones dimensionales de sus componentes.

Palabras clave:
Ensamblaje automático. Fabricación flexible. Sistemas Expertos
Abstract

The automatic assembly of parts can create some problems because of the dimensional variations of the elements to be assembled (mainly because of mechanical inconsistencies). A representative example of this kind of assembly problem can be found in the production of vehicle headlamps, where one of the main stages is the assembly of the cover lens, which is made of polycarbonate, over a black housing made of polypropylene. This process is currently done statically and does not consider possible size variations of the plastic parts, thus resulting in headlamps with dimensional errors.

This paper introduces a new methodology of dynamic assembly for an industrial application that requires an adaptive positioning of the parts that are to be assembled. In addition, this work presents a successful example of an industrial prototype where different technologies, which aim to solve different problems, have to be analysed and tested. In particular, different approaches were studied: surface measurement sensors for transparent and deformable objects, actuation systems that could modify the assembly position of the parts, and control algorithms that could carry out this adaptive assembly automatically. A robust industrial prototype for vehicle headlamp assembly has been designed and built. It has been validated in both a research lab and in the assembly line of a vehicle headlamp factory. The new prototype solves the problem of assembling vehicle headlamps, achieving a final product with minimum dimensional errors and offering an example of a solution to the problem of the assembly of pieces with dimensional errors.

Keywords:
Automatic Assembly
Flexible Manufacturing Systems
Expert Systems
Referencias
[Bishop, 2008]
R.H. Bishop.
Mechatronic systems, sensors and actuators: fundamen- tals and modeling.
CRC Press, (2008),
[Blomdell et al., 2005]
A. Blomdell, G. Bolmsjo¿, T. Brogårdh, P. Cederberg, M. Isaksson, R. Johans- son, M. Haage, K. Nilsson, M. Olsson, T. Olsson, A. Robertsson, J. Wang.
Extending an industrial robot controller— Implementation and applications of a fast open sensor interface.
IEEE Ro- botics and Automation Magazine, 12 (2005 September), pp. 85-94
[Bruyninckx and de Schutter, 1996]
H. Bruyninckx, J. de Schutter.
Specification of force-controlled actions in the task frame formalism- a synthesis.
IEEE Transactions on Robotics and Automation, 12 (1996), pp. 581-589
[Chen and Wong, 2002]
C. Chen, C. Wong.
Self-generating rule-mapping fuzzy controller de- sign using a genetic algorithm.
In: IEE Proc. Control theory applications., 149 (2002), pp. 143-148
[Gamez et al., 2009a]
J. Gamez, J. Gomez Ortega, A. Sanchez Garcia, S. Satorres Martinez.
Robotic software architecture for multisensor fusion system.
IEEE Trans. on Industrial Electronics, 56 (2009), pp. 766-777
[Gamez et al., 2008]
J. Gamez, A. Robertsson, J. Gomez Ortega, R. Johansson.
Sensor fu- sion for compliant robot motion control.
IEEE Trans. on Robotics, 24 (2008), pp. 430-441
[Gamez et al., 2009b]
J. Gamez, A. Robertsson, J. Gomez Ortega, R. Johansson.
Self- calibrated robotic manipulator force observer.
Robotics and Computer In- tegrated Manufacturing, 25 (2009), pp. 366-378
[Gamez-Garcia et al., 2009]
J. Gamez-Garcia, J. Gómez-Ortega, S. Satorres-Martinez, A. Sanchez-Martinez.
High-accuracy automatic system to assemble vehicle headlamps. In: Proceedings of the IEEE Int. Conf. On Emerging Tech.
And Factory Automation (ETFA), (2009),
[Groover, 2008]
M.P. Groover.
Automation, Production Systems and Computer- Integrated Manufacturing. Pearson Education, Upper Saddle River.
New Jer-sey, (2008),
[Haber and Alique, 2007]
R. Haber, J.R. Alique.
Fuzzy logic-based torque control system for milling process optimization.
IEEE Trans. on Systems, man and Cybernetics, 37 (2007), pp. 941-950
[Johansson, 1993]
R. Johansson.
System Modeling and Identification.
Prentice Hall, (1993),
[Klir and Folger, 1988]
Klir, G., Folger, T., 1988. Fuzzy sets, information and uncertainty. Englewood. Cliffs, NJ,;1; Prentice Hall.
[Kosko, 1990]
Kosko, B., 1990. Fuzzy Thinking: The new science of Fuzzy Logic. Flamingo Press/Harper Collins, London.
[Kosko, 1992]
B. Kosko.
Neural networks and fuzzy systems.
Prentice Hall, (1992),
[Kubica et al., 2005]
E. Kubica, D. Madill, D. Wang.
Designing stable mimo fuzzy contro- llers.
Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transac- tions on, 35 (2005), pp. 372-380
[Lam and Ling, 2008]
H. Lam, W. Ling.
Sampled-data fuzzy controller for continuos nonlinear systems.
IEEE Control Theory Appl., 2 (2008), pp. 32-39
[Liu et al., 2009]
Liu, Z., Yang, J., Wang, M., 2009. Research of kinematics parameter calibration for robot manipulator based on measuring method. In: Mechatronics and Automation, 2009. ICMA 2009. International Conference on. pp. 2735-2740.
[Ljung, 1999]
Ljung, L., 1999. System Identification - Theory For the User. 2nd ed, PTR Prentice Hall, Upper Saddle River, N.J.
[Lopes and Almeida, 2008]
A. Lopes, F. Almeida.
A force-impedance controlled industrial robot using an active robotic auxiliary device.
Robotics and Computer-Integrated Manufacturing, 24 (2008), pp. 299-309
[Mandani, 1974]
Mandani, E., 1974. Application of fuzzy algorithms for control of a simple dynamic process. In: Proc. Inst. Electr. Eng. Vol. 121. pp. 1585-1588.
[Novak and Musonda, 1991]
J.D. Novak, D. Musonda.
A twelve-year longitudinal study of science concept learning.
American Educational Research Journal, 28 (1991), pp. 117-153
[Papageorgiou et al., 2009]
E. Papageorgiou, A. Markinos, T. Gemptos.
Application of fuzzy cog- nitive maps for cotton yield manegement in precision farming.
Expert sys- tems with Applications, 36 (2009), pp. 12399-12413
[Pawlak, 2007]
A.M. Pawlak.
Sensors and actuators in mechatronics: design and appli- cations.
CRC Press, (2007),
[Ross, 2004]
T. Ross.
Fuzzy logic with engineering applications.
2nd Ed, Chichester, Wiley, (2004),
[Roychowdhury and Pedrycz, 2001]
S. Roychowdhury, W. Pedrycz.
A survey of defuzzication strategies.
Int, Journal of Intelligent Systems, 16 (2001), pp. 679-695
[Wei and Hirzinger, 1998]
G.Q. Wei, G. Hirzinger.
Active self-calibration of hand-mounted laser range finders.
IEEE Trans. Robotics and Automation, 14 (1998), pp. 493-497
[Ying, 1999]
H. Ying.
Analytic structure of a typical fuzzy controller employin trape- zoidal input fuzzy sets and nonlinear control rules.
Journal on Inf. Sci., 116 (1999), pp. 177-203
Copyright © 2011. Elsevier España, S.L.. Todos los derechos reservados
Descargar PDF
Opciones de artículo