covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Control de un compensador activo selectivo mediante un algoritmo de optimizació...
Información de la revista
Vol. 12. Núm. 1.
Páginas 13-24 (enero - marzo 2015)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
4076
Vol. 12. Núm. 1.
Páginas 13-24 (enero - marzo 2015)
Open Access
Control de un compensador activo selectivo mediante un algoritmo de optimización sujeto a restricciones cuadráticas
Control of a Selective Power Compensator by means of an optimization algorithm subject to quadratic constraints
Visitas
4076
J.C. Alfonso-Gil
Autor para correspondencia
jalfonso@uji.es

Autor para correspondencia. Tel.: +34 96 4728181; fax: +34 96 4728170.
, C. Ariño, E. Pérez, H. Beltrán
Departamento de Ingeniería de Sistemas Industriales y Diseño, Universitat Jaume I, Av. Vicent Sos Baynat, s/n 12071 Castellón de la Plana, España
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

El objetivo fundamental de este artículo es proponer un algoritmo de optimización basado en desigualdades matriciales lineales (LMIs) para la compensación selectiva del desequilibrio, el desfase y la distorsión armónica de las corrientes de carga de un sistema trifásico a cuatro hilos. Mediante el IEEE Std.1459 se determinan los términos de potencia que cuantifican cada uno de los fenómenos no eficientes a compensar (desequilibrio, desfase y distorsión) y, a continuación, se define la programación cuadrática sujeta a restricciones cuadráticas y la forma de resolver la optimización mediante LMIs. El algoritmo utiliza unos coeficientes de ponderación asociados a cada uno de los términos no eficientes para darles más o menos importancia relativa en función del criterio elegido en cada momento. Por otro lado, se realiza el diseño del condensador de corriente continua y los reguladores para el control de la tensión de dicho condensador. Así mismo, se diseñan tres tipos diferentes de reguladores para el control de corriente del SAPC y se analizan las prestaciones de cada uno de ellos. Finalmente se simulan diferentes casos de compensación selectiva, se analizan los resultados obtenidos y se exponen las conclusiones.

Palabras clave:
Sistemas eléctricos de potencia
Distribución de potencia
Problemas de optimización
Control con prealimentación.
Abstract

The main goal of this work is the proposal of an optimization algorithm based on linear matrix inequalities (LMI) used to selectively compensate the unbalance, the harmonic distortion, and the phase shift introduced by the load currents in a three phase four-wire system. The use of the IEEE Std.1459 allows determining each of the power terms associated to these non-efficient phenomena. Once these power terms are defined, a quadratically constrained quadratic program is set and solved by LMIs. The algorithm uses three weighting coefficients associated to each non-efficient term in order to assign them a relative importance depending on a user determined criterion. Moreover, the paper presents the design of the DC bus capacitor as well as the regulators used to control its voltage. Furthermore, three different regulators are introduced and designed to control the SAPC currents. A comparison among them is also introduced. Finally, simulation results for different selective compensation cases are presented, analyzed and various conclusions are extracted.

Keywords:
Electric power systems
Power distribution
Optimization problems
Feedforward control.
Referencias
[Akagi et al., 2008]
Akagi, Hirofumi, Edson Watanabe and Mauricio Aredes. 2008. “More Power to You (review of Instantaneous Power Theory and Applications to Power Conditioning by Akagi, H. et Al.; 2007).” IEEE Power and Energy Magazine 6 (1): 80-81.
[Alfonso-Gil et al., 2013]
Alfonso-Gil, J. C, C Ariño, H Beltrán, and E Pérez. 2013. “Comparative Study of Current Controllers for Shunt Active Power Compensators Used in Smart Grid Applications.” International Conference on Renewable Energies and Power Quality (ICREPQ’13). Bilbao (Spain): 978-84-695-6965-8.
[Alfonso-Gil et al., 2014]
Alfonso-Gil, J. C., C. Ariño, C. Bernad Viciano, H. Beltran, and E. Pérez. 2014 “Control de La Tensión Del Bus de Continua de Un Filtro Activo de Tipo Paralelo.” XXXV Jornadas de Automática. Valencia: 122-129.
[Alfonso-Gil et al., 2013a]
Alfonso-Gil, Jose Carlos, Jose Joaquin Vague-Cardona, Salvador Orts-Grau, Francisco J. Gimeno-Sales, and Salvador Segui-Chilet. 2013. “Enhanced Grid Fundamental Positive-Sequence Digital Synchronization Structure.” IEEE Transactions on Power Delivery 28 (1) (January): 226-234.
[Boyd et al., 1994]
Boyd, Stephen, Laurent El Ghaoui, Eric Feron, and Venkataramanan Balakrishnan. 1994. Linear Matrix Inequalities in System and Control Theory.
[Briz et al., 2013]
Briz, Fernando, Pablo Garcia, Michael W. Degner, David Diaz-Reigosa, and Juan Manuel Guerrero. 2013. “Dynamic Behavior of Current Controllers for Selective Harmonic Compensation in Three-Phase Active Power Filters.” IEEE Transactions on Industry Applications 49 (3) (May): 1411– 1420.
[Dixon et al., 1996]
Dixon, J., S. Tepper, and L. Mor n. 1996. “Practical Evaluation of Different Modulation Techniques for Current-Controlled Voltage Source Inverters.” IEEE Proceedings - Electric Power Applications 143 (4): 301. Gupta Nitin S. P. Singh and S. P. Dubey. 2011. “Fuzzy Logic Controlled Shunt Active Power Filter for Reactive Power Compensation and Harmonic Elimination.” In 2011 2nd International Conference on Computer and Communication Technology (ICCCT-2011), 82-87.
[Anon, 2010]
Anon, “IEEE Standard Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions.” 2010.
[Khadem et al., 2014]
Khadem S.K. M. Basu and M.F. Conlon. 2014. “Harmonic Power Compensation Capacity of Shunt Active Power Filter and Its Relationship with Design Parameters.” Power Electronics, IET 7 (2) (February 1): 418-430.
[Kuiava et al., 2009]
Kuiava R. R. A. Ramos and N. G. Bretas. 2009. “Control Design of a STATCOM with Energy Storage System for Stability and Power Quality Improvements.” In 2009 IEEE International Conference on Industrial Technology, 1-6.
[Liu Fangrui et al., 2006]
Liu Fangrui and Ali I. Maswood. 2006. “A Novel Variable Hysteresis Band Current Control of Three-Phase Three-Level Unity PF Rectifier With Constant Switching Frequency.” IEEE Transactions on Power Electronics 21 (6) (November): 1727-1734.
[Lobo et al., 1998]
Lobo, Miguel Sousa, Lieven Vandenberghe, Stephen Boyd, and Hervé Lebret. 1998. “Applications of Second-Order Cone Programming.” Linear Algebra and Its Applications 284 (1-3) (November): 193-228.
[Lofberg, 2004]
Lofberg J. 2004. “YALMIP: A Toolbox for Modeling and Optimization in MATLAB.” In 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508), 284-289.
[Malesani et al., 1991]
Malesani L. P. Tenti E. Gaio and R. Piovan. 1991. “Improved Current Control Technique of VSI PWM Inverters with Constant Modulation Frequency and Extended Voltage Range.” IEEE Transactions on Industry Applications 27 (2): 365-369.
[Miranda Homero Víctor et al., 2008]
Miranda Homero Víctor C rdenas and Elvia Palacios. 2008. “Una Alternativa Para Regular Los Buses de CC En Un Filtro Activo Paralelo Con Inversor de 5 Niveles En Cascada.” Revista Iberoamericana de Automática E Informática Industrial RIAI 5 (3): 29-36.
[Mishra et al., 2003]
Mishra M.K. A. Joshi and A. Ghosh. 2003. “Control Schemes for Equalization of Capacitor Voltages in Neutral Clamped Shunt Compensator.” IEEE Transactions on Power Delivery 18 (2) (April): 538-544.
[Orts et al., 2008]
Orts, S., F.J. Gimeno-Sales, A. Abellan, S. Segui-Chilet, M. Alcaniz, and R. Masot. 2008. “Achieving Maximum Efficiency in Three-Phase Systems With a Shunt Active Power Compensator Based on IEEE Std. 1459.” IEEE Transactions on Power Delivery 23 (2) (April): 812-822.
[Orts-Grau et al., 2010]
Orts-Grau, S., J.C. Alfonso-Gil, F.J. Gimeno-Sales, and S. Segui-Chilet. 2010. “New Resolution of the Unbalance Power According to Std. 1459.” IEEE Transactions on Power Delivery 25 (1) (January): 341-350.
[Orts-Grau et al., 2010a]
Orts-Grau, S., F. J. Gimeno-Sales, A. Abellan-Garcia, S. Segui-Chilet, and J. C. Alfonso-Gil. 2010. “Improved Shunt Active Power Compensator for IEEE Standard 1459 Compliance.” IEEE Transactions on Power Delivery 25 (4) (October): 2692-2701.
[Orts-Grau et al., 2008]
Orts-Grau, S., F.J. Gimeno-Sales, S. Segui-Chilet, A. Abellan-Garcia, M. Alcaniz, and R. Masot-Peris. 2008. “Selective Shunt Active Power Compensator Applied in Four-Wire Electrical Systems Based on IEEE Std. 1459.” IEEE Transactions on Power Delivery 23 (4) (October): 2563-2574.
[Orts-Grau et al., 2009]
Orts-Grau, S., F.J. Gimeno-Sales, S. Segui-Chilet, A. Abellan-Garcia, M. Alcaniz-Fillol, and R. Masot-Peris. 2009. “Selective Compensation in Four-Wire Electric Systems Based on a New Equivalent Conductance Approach.” IEEE Transactions on Industrial Electronics 56 (8) (August): 2862-2874.
[Patidar and Singh, 2010]
Patidar R. D. and S. P. Singh. 2010. “Digital Signal Processor Based Shunt Active Filter Controller for Customer-Generated Harmonics and Reactive Power Compensation.” Electric Power Components and Systems 38 (8) (May 28): 937-959.
[Ponnaluri and Brickwedde, 2001]
Ponnaluri S. and A. Brickwedde. 2001. “Generalized System Design of Active Filters.” In 2001 IEEE 32nd Annual Power Electronics Specialists Conference (IEEE Cat. No.01CH37230), 3:1414-1419. IEEE.
[Prusty et al., 2011]
Prusty, Smruti Ranjan, Saswat Kumar Ram, B.D. Subudhi, and K.K. Mahapatra. 2011. “Performance Analysis of Adaptive Band Hysteresis Current Controller for Shunt Active Power Filter.” In 2011 International Conference on Emerging Trends in Electrical and Computer Technology, 425-429.
[Rudnick et al., 2003]
Rudnick, H., J. Dixon and L. Moran. 2003. “Delivering Clean and Pure Power.” IEEE Power and Energy Magazine 1 (5) (September): 32-40.
[Salmeron and Herrera, 2006]
Salmeron P. and R.S. Herrera. 2006. “Distorted and Unbalanced Systems Compensation Within Instantaneous Reactive Power Framework.” IEEE Transactions on Power Delivery 21 (3) (July): 1655-1662.
[Shah et al., 2014]
Shah, Mihir C., Siddharthsingh K. Chauhan, P. N. Tekwani, and Ram Ratan Tiwari. 2014. “Analysis Design and Digital Implementation of a Shunt Active Power Filter with Different Schemes of Reference Current Generation.” IET Power Electronics 7 (3) (March 1): 627-639.
[Singh and Verma, 2008]
Singh B. and V. Verma. 2008. “Selective Compensation of Power-Quality Problems Through Active Power Filter by Current Decomposition.” IEEE Transactions on Power Delivery 23 (2) (April): 792-799.
[Singh Bhim Vishal Verma et al., 2007]
Singh Bhim Vishal Verma and Jitendra Solanki. 2007. “Neural Network- Based Selective Compensation of Current Quality Problems in Distribution System.” IEEE Transactions on Industrial Electronics 54 (1) (February): 53-60.
[Singh et al., 2007]
Singh, G.K., A.K. Singh and R. Mitra. 2007. “A Simple Fuzzy Logic Based Robust Active Power Filter for Harmonics Minimization under Random Load Variation.” Electric Power Systems Research 77 (8) (June): 1101– 1111.
[Sturm Jos, 1999]
Sturm Jos F. 1999. “Using SeDuMi 1.02 A Matlab Toolbox for Optimization over Symmetric Cones.” Optimization Methods and Software 11 (1-4) (January): 625-653.
[Zhou et al., 2014]
Zhou, Hua, Yun Wei Li, Navid R. Zargari, Zhongyaun Cheng, Ruoshui Ni, and Ye Zhang. 2014. “Selective Harmonic Compensation (SHC) PWM for Grid-Interfacing High-Power Converters.” IEEE Transactions on Power Electronics 29 (3) (March): 1118-1127.
Copyright © 2013. EA
Descargar PDF
Opciones de artículo