covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Robots Mo¿viles con Orugas Historia, Modelado, Localizacio¿n y Control
Información de la revista
Vol. 12. Núm. 1.
Páginas 3-12 (enero - marzo 2015)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
7852
Vol. 12. Núm. 1.
Páginas 3-12 (enero - marzo 2015)
Open Access
Robots Mo¿viles con Orugas Historia, Modelado, Localizacio¿n y Control
Autonomous Tracked Robots. History, Modelling, Localization, and Motion Control
Visitas
7852
Ramón González
Autor para correspondencia
rgonzalez@ual.es
ramong@mit.edu

Autor para correspondencia.
, Francisco Rodríguez, José Luis Guzmán
Departamento de Informática. Universidad de Almería, Ctra. Sacramento s/n, 04120, Almería, España
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

Uno de los campos de aplicación más significativos de la robótica móvil consiste en robots capaces de operar en condiciones exteriores sobre terrenos no preparados (robots planetarios, robots en agricultura, robot en operaciones de búsqueda y rescate, robots militares, etc.). Sin embargo, conseguir que los robots se muevan de forma eficiente y precisa en este tipo de entornos no es una tarea sencilla. Un primer aspecto crítico es el sistema de locomoción. En este caso, las orugas constituyen una alternativa sólida a otro tipo de sistemas y desde principios del siglo XX han demostrado sus bondades en vehículos tripulados. En este artículo se motiva y se demuestra mediante pruebas reales la idoneidad de este tipo de locomoción para robots móviles en terrenos no preparados. Es importante remarcar que este artículo pretende ser un resumen extendido del libro recientemente publicado por los autores “Autonomous Tracked Robots in Planar Off-Road Conditions” (González et al., 2014), y, por lo tanto, no pretende ser una contribución original. Inicialmente se presenta una perspectiva histórica de los vehículos y los robots con orugas. Posteriormente se discuten los aspectos de modelado con especial mención al fenomeno del deslizamiento. A continuación, se analizan varias estrategias de localización, en particular, la odometria visual. También se analiza el aspecto del control de navegación, para ello se analizan varias estrategias con compensación del deslizamiento. Finalmente se expresan las conclusiones del trabajo en base a la experiencia de los autores en este campo.

Palabras clave:
Deslizamiento
Odometria Visual
Control Adaptativo
Control Predictivo
Abstract

One of the most significant research field in mobile robotics deals with robots operating in off-road conditions (planetary rovers, agriculture robots, search and rescue operations, military robots, etc.). However, obtaining a successful result is not an easy task. One primary point is the locomotion system. In this case, tracks constitute a well-known approach and since the beginning of the 20th century this locomotion system has demonstrated remarkable results in manned vehicles. This article motivates and shows through physical experiments the goodness of tracked mobile robots in off-road conditions. Firstly, a historical perspective of tracked vehicles and tracked robots is addressed. Then, the main modelling aspects are introduced, in particular, the slip phenomenon. After that, several localization techniques are discussed with especial mention to visual odometry. The motion control aspect is also of primal importance. In this regard, several slip-compensation control strategies are analysed. Finally, the authors background obtained in this field is expounded.

Keywords:
Slip
Visual Odometry
Adaptive Control
Predictive Control.
Referencias
[Angelova et al., 2007]
A. Angelova, L. Matthies, D. Helmick, P. Perona.
Learning and Prediction of Slip from Visual Information.
Journal of Field Robotics, 24 (2007), pp. 205-231
[Aström and Murray, 2008]
K. Aström, R. Murray.
Feedback Systems: An Introduction for Scientists and Engineers.
Princeton University Press, (2008),
[Bekker, 1956]
M. Bekker.
Theory of Land Locomotion. The Mechanics of Vehicle Mobility.
First Edition. Ann Arbor, The Univiersity of Michigan Press, (1956),
[Benoit et al., 2003]
O. Benoit, P. Gotteland, A. Quibel.
Prediction of Trafficability for Tracked Vehicle on Broken Soil: Real Size Tests.
Journal of Terramechanics, 40 (2003), pp. 135-160
[Borenstein, 1994]
Borenstein, J., May 1994. The CLAPPER: A Dual–drive Mobile Robot with Internal Correction of Dead–reckoning Errors. IEEE Conference on Robotics and Automation, IEEE, pp. 3085-3090, San Diego, USA.
[Brunelli, 2009]
R. Brunelli.
Template Matching Techniques in Computer Vision: Theory and Practice.
John Wiley & Sons, (2009),
[Camacho and Bordons, 2004]
E. Camacho, C. Bordons.
Model Predictive Control, Second Edition. Advanced Textbooks in Control and Signal Processing.
Springer, (2004),
[Canudas et al., 1997]
C. Canudas, B. Siciliano, G. Bastin.
Theory of Robot Control, Second Edition. Communications and Control Engineering.
Springer, (1997),
[Cariou et al., 2009]
C. Cariou, R. Lenain, B. Thuilot, M. Berducat.
Automatic Guidance of a Four-Wheel-Steering Mobile Robot for Accurate Field Operations.
Journal of Field Robotics, 26 (2009), pp. 504-518
[Crolla and Schwanghart, 1992]
D. Crolla, H. Schwanghart.
Vehicle Dynamics - Steering I.
Journal of Terramechanics, 29 (1992), pp. 7-17
[Endo et al., 2007]
Endo, D., Okada, Y., Nagatani, K., Yoshida, K., October 2007. Path Following Control for Tracked Vehicles Based on Slip–Compensating Odometry. IEEE International Conference on Intelligent Robots and Systems, IEEE, pp. 2871-2876, san Diego, USA.
[González et al., 2010]
R. González, M. Fiacchini, T. Á lamo, J.L. Guzmán, F. Rodríguez.
Adaptive Control for a Mobile Robot under Slip Conditions using an LMI– based Approach.
European Journal of Control, 16 (2010), pp. 144-155
[González et al., 2014]
González, R., Rodríguez, F., Guzmán, J.L., 2014. Autonomous Tracked Robots in Planar Off-Road Conditions. Modelling, Localization and Motion Control. Series: Studies in Systems, Decision and Control. Springer, Germany.
[González et al., 2012]
R. González, F. Rodríguez, J.L. Guzmán, C. Pradalier, R. Siegwart.
Combined Visual Odometry and Visual Compass for Off-Road Mobile Robots Localization.
Robotica, 30 (2012), pp. 865-878
[Gracia and Tornero, 2007]
L. Gracia, J. Tornero.
Kinematic Modeling of Wheeled Mobile Robots with Slip.
Advanced Robotics, 21 (2007), pp. 1253-1279
[Helmick et al., 2009]
D. Helmick, A. Angelova, L. Matthies.
Terrain Adaptive Navigation for Planetary Rovers.
Journal of Field Robotics, 26 (2009), pp. 391-410
[Helmick et al., 2006]
D. Helmick, S. Roumeliotis, Y. Cheng, D. Clouse, M. Bajracharya, L. Matthies.
Slip-compensated Path Following for Planetary Exploration Rovers.
Advanced Robotics, 20 (2006), pp. 1257-1280
[Hofmann-Wellenhof et al., 2001]
B. Hofmann-Wellenhof, H. Lichtenegger, J. Collins.
Global Positioning System: Theory and Practice.
Fifth Edition, Springer, (2001),
[Hohl, 2007]
G.H. Hohl.
Military Terrain Vehicles.
Journal of Terramechanics, 44 (2007), pp. 23-34
[Hornback, 1998]
P. Hornback.
The Wheel versus Track Dilemma.
Armor Magazine, 107 (1998), pp. 33-34
[Iagnemma and Dubowsky, 2000]
Iagnemma, K., Dubowsky, S., September 2000. Mobile Robot Rough–Terrain Control (RTC) for Planetary Exploration. ASME Biennial Mechanisms and Robotics Conference, ASME, pp. 10-13, Baltimore, USA.
[Iagnemma and Dubowsky, 2004]
Iagnemma, K., Dubowsky, S., 2004. Mobile Robots in Rough Terrain. Estimation, Motion Planning, and Control with Application to Planetary Rovers. Springer Tracts in Advanced Robotics. Springer, Germany.
[Iagnemma et al., 2004]
K. Iagnemma, S. Kang, H. Shibly, S. Dubowsky.
Online Terrain Parameter Estimation for Wheeled Mobile Robots with Application to Planetary Rovers.
IEEE Transactions on Robotics, 20 (2004), pp. 921-927
[Iagnemma and Ward, 2009]
K. Iagnemma, C.C. Ward.
Classification–based Wheel Slip Detection and Detector Fusion for Mobile Robots on Outdoor Terrain.
Autonomous Robots, 26 (2009), pp. 33-46
[Ishigami et al., 2009]
G. Ishigami, K. Nagatani, K. Yoshida.
Slope Traversal Controls for Planetary Exploration Rover on Sandy Terrain.
Journal of Field Robotics, 26 (2009), pp. 264-286
[Johnson et al., 2008]
Johnson, A.E., Goldberg, S.B., Yang, C., Matthies, L.H., May 2008. Robust and Efficient Stereo Feature Tracking for Visual Odometry. In: IEEE International Conference on Robotics and Automation. IEEE, pp. 39-46, Pasadena, USA.
[Kanayama et al., 1990]
Kanayama, Y., Kimura, Y., Miyazaki, F., Noguchi, T., 1990. A Stable Tracking Control Method for an Autonomous Mobile Robots. IEEE International Conference on Robotics and Automation, IEEE, pp. 384-389, Cincinnati, USA.
[Klancar and Skrjanc, 2007]
G. Klancar, I. Skrjanc.
Tracking–error Model–based Predictive Control for Mobile Robots in Real Time. Robotics and Autonomous Systems.
, 55 (2007), pp. 460-469
[Korlath, 2007]
G. Korlath.
Mobility Analysys of Off-Road Vehicles: Benefits for Development, Procurement and Operation.
Journal of Terramechanics, 44 (2007), pp. 383-393
[Krebs et al., 2008]
Krebs, A., Thueer, T., Carrasco, E., Siegwart, R., February 2008. Towards Torque Control of the CRAB Rover. International Symposium on Artificial Intelligence, Robotics and Automation in Space, Los Angeles, USA.
[Labrosse, 2006]
F. Labrosse.
The Visual Compass: Performance and Limitations of an Appearance–Based Method.
Journal of Field Robotics, 23 (2006), pp. 913-941
[Le, 1999]
Le, A., 1999. Modelling and Control of Tracked Vehicles. PhD Thesis, University of Sydney, Sydney, Australia in press.
[Lenain et al., 2007]
R. Lenain, B. Thuilot, C. Cariou, P. Martinet.
Adaptive and Predictive Path Tracking Control for Off–road Mobile Robots.
European Journal of Control, 13 (2007), pp. 419-439
[Leung and Malik, 2001]
T. Leung, J. Malik.
Representing and Recognizing the Visual Appearance of Materials using Three-Dimensional Textons. Int.
Journal of Computer Vision, 43 (2001), pp. 29-44
[Liu and Liu, 2009]
Liu, Y., Liu, G., 2009. Mobile Manipulation using Tracks of a Tracked Mobile Robot. In: IEEE Int. Conf. on Intelligent Robots and Systems (IROS). IEEE, pp. 948-953.
[Low and Wang, 2008]
C. Low, D. Wang.
GPS–based Path Following Control for a Car–like Wheeled Mobile Robot with Skidding and Slipping.
IEEE Transactions on Control Systems Technology, 16 (2008), pp. 340-347
[Martínez et al., 2005]
J. Martínez, A. Mandow, J. Morales, S. Pedraza, A. García-Cerezo.
Approximating Kinematics for Tracked Mobile Robots.
The International Journal of Robotics Research, 24 (2005), pp. 867-878
[Matthies et al., 2007]
L. Matthies, M. Maimone, A. Johnson, Y. Cheng, R. Willson, C. Villalpando, S. Goldberg, A. Huertas.
Computer Vision on Mars.
International Journal of Computer Vision, 75 (March 2007), pp. 67-92
[Mayne et al., 2000]
D. Mayne, J. Rawlings, C. Rao, P. Scokaert.
Constrained Model Predictive Control: Stability and Optimality.
Automatica, 36 (2000), pp. 789-814
[McNae, 2000]
McNae, A., 2000. A History of Komatsu: Construction and Mining Equipment. Beenleigh, Qld.
[Montiel and Davison, 2006]
Montiel, J., Davison, A., May 2006. A Visual Compass based on SLAM. IEEE International Conference on Robotics and Automation, IEEE, pp. 1917-1922, Orlando, USA.
[Morales et al., 2009]
J. Morales, J. Martinez, A. Mandow, A. Garcia-Cerezo, S. Pedraza.
Power Consumption Modeling of Skid–Steer Tracked Mobile Robots on Rigid Terrain.
IEEE Transactions on Robotics, 25 (2009), pp. 1098-1108
[Mourikis et al., 2007]
A. Mourikis, N. Trawny, S. Roumeliotis, D. Helmick, L. Matthies.
Autonomous Stair Climbing for Tracked Vehicles.
International Journal of Robotics Research, 26 (2007), pp. 737-758
[Nourani-Vatani et al., 2009]
Nourani-Vatani, N., Roberts, J., Srinivasan, M., May 2009. Practical Visual Odometry for Car–like Vehicles. IEEE International Conference on Robotics and Automation, IEEE, pp. 3551-3557, Kobe, Japan.
[Olson et al., 2003]
C. Olson, L. Matthies, M. Schoppers, M. Maimone.
Rover Navigation using Stereo Ego–motion. Robotics and Autonomous Systems.
, 43 (2003), pp. 215-229
[Oriolo et al., 2002]
G. Oriolo, A. De Luca, M. Vendittelli.
WMR Control Via Dynamic Feedback Lineralization: Design.
Implementation, and Experimental Validation. IEEE Transactions on Control Systems Technology, 10 (November 2002), pp. 835-852
[Ray, 2009]
L.E. Ray.
Estimation of Terrain Forces and Parameters for Rigid-Wheeled Vehicles.
IEEE Transactions on Robotics, 25 (2009), pp. 717-726
[Rubinstein and Coppock, 2007]
D. Rubinstein, J. Coppock.
A Detailed Single-link Track Model for Multi-Body Dynamic Simulation of Crawlers.
Journal of Terramechanics, 44 (2007), pp. 355-364
[Sánchez-Hermosilla et al., 2010]
Sánchez-Hermosilla, J., Rodríguez, F., González, R., Guzmán, J., Berenguel, M., 2010. A Mechatronic Description of an Autonomous Mobile Robot for Agricultural Tasks in Greenhouses. In: Barrera, A. (Ed.), Mobile Robots Navigation. InTech, pp. 583-608.
[Shoval, 2004]
Shoval, S., 2004. Stability of a Multi Tracked Robot Traveling over Steep Slopes. In: IEEE Int. Conf. on Robotics and Automation (ICRA). Vol. 5. IEEE, pp. 4701-4706.
[Siegwart and Nourbakhsh, 2004]
Siegwart, R., Nourbakhsh, I., 2004. Introduction to Autonomous Mobile Robots, First Edition. A Bradford book. The MIT Press, USA.
[Wan et al., 2009]
J. Wan, J. Vehi, N. Luo.
A Numerical Approach to Design Control Invariant Sets for Constrained Nonlinear Discrete–time Systems with Guaranteed Optimality.
Journal of Global Optimization, 44 (2009), pp. 395-407
[Wang and Low, 2008]
D. Wang, C. Low.
Modeling and Analysis of Skidding and Slipping in Wheeled Mobile Robots: Control Design Perspective.
IEEE Transactions on Robotics, 24 (2008), pp. 676-687
[Wong, 1984]
J. Wong.
An Introduction to Terramechanics.
Journal of Terramechanics, 21 (1984), pp. 5-17
[Wong, 2001]
J. Wong.
Theory of Ground Vehicles.
Third Edition, John Wiley & Sons, Inc, (2001),
[Wong and Huang, 2006]
J. Wong, W. Huang.
Wheels vs. Tracks – A Fundamental Evaluation From the Traction Perspective.
Journal of Terramechanics, 43 (2006), pp. 27-42
[Yi et al., 2007]
Yi, J., Song, D., Zhang, J., Goodwin, Z., April 2007. Adaptive Trajectory Tracking Control of Skid–Steered Mobile Robots. International Conference on Robotics and Automation, IEEE, pp. 2605-2610, Rome, Italy.
[Yi et al., 2009]
J. Yi, H. Wang, J. Zhang, D. Song, S. Jayasuriya, J. Liu.
Kinematic Modeling and Analysis of Skid–Steered Mobile Robots With Applications to Low–Cost Inertial–Measurement–Unit Based Motion Estimation.
IEEE Transactions on Robotics, 25 (2009), pp. 1087-1097
[Zi-rong et al., 2013]
L. Zi-rong, S. Jian-zhong, Z. Zhi-xiong.
A Reconfigurable Tracked Mobile Robot based on Four-linkage Mechanism.
Journal of Central South University, 20 (2013), pp. 62-70
Copyright © 2014. EA
Descargar PDF
Opciones de artículo