covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Estabilidad de sistemas Takagi-Sugeno bajo perturbaciones persistentes: estimaci...
Información de la revista
Vol. 12. Núm. 4.
Páginas 457-466 (octubre - diciembre 2015)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
3873
Vol. 12. Núm. 4.
Páginas 457-466 (octubre - diciembre 2015)
Open Access
Estabilidad de sistemas Takagi-Sugeno bajo perturbaciones persistentes: estimación de conjuntos inescapables
Stability of Takagi-Sugeno systems under nonvanishing disturbances: estimating inescapable sets
Visitas
3873
J.L. Pitarcha,
Autor para correspondencia
jose.pitarch@autom.uva.es

Autor para correspondencia.
, A. Salab, C.V. Ariñoc
a Departamento de Ingeniería de Sistemas y Automática, EII, Universidad de Valladolid. C/ Doctor Mergelina s/n, 47011, Valladolid, ESPAÑ A.
b Instituto de Automática e Informática Industrial (ai2), Universitat Politècnica de València. Camino de Vera s/n, 46022, Valencia, ESPAÑ A.
c Departamento de Ingeniería de Sistemas Industriales y Diseño, Universitat Jaume I. Av. de Vicent Sos Baynat s/n, 12071, Castellón de la Plana, ESPAÑA.
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

El presente trabajo analiza el comportamiento de sistemas borrosos Takagi-Sugeno ante perturbaciones persistentes (caracterizadas bien por cotas conocidas de amplitud o de potencia en media cuadrática). El análisis se centra en validar que, ante una determinada cota de potencia de perturbaciones y región de condiciones iniciales, existe una región inescapable (contenida en la región donde el modelo TS es válido como modelo de un sistema no lineal subyacente). Algunos de los problemas planteados se formulan como problemas de desigualdades matriciales lineales (LMI), posibles de resolver de forma óptima por programación semidefinida, y otros serán productos de matrices variables de decisión y dos escalares (BMI), que son resueltos de forma iterativa.

Palabras clave:
Takagi-Sugeno
Rechazo a perturbaciones
Conjunto inescapable
Estabilidad local
LMI
Perturbaciones persistentes.
Abstract

The present work analizes the behaviour of Takagi-Sugeno fuzzy systems in front of non-vanishing disturbances (characterized by known amplitude or quadratic-mean power bounds). Such analysis is focused in validating that, in front of a specific disturbance bound and an initial-condition region, there exist an inescapable region (contained in the region where the TS model is valid as a model of the underlying nonlinear system). Some of the stated problems here are cast as linear matrix inequality problems (LMI), efficiently solvable by semidefinite programming. Others, however, will involve nonconvex products of decision-variable matrices and two scalars (BMI), which are solved in an iterative way.

Keywords:
Takagi-Sugeno
Disturbance rejection
Inescapable set
Local stability
LMI
Nonvanishing disturbances.
Referencias
[Abedor et al., 1996]
J. Abedor, K. Nagpal, K. Poolla.
A linear matrix inequality approach to peak-to-peak gain minimization.
International Journal of Robust and Nonlinear Control, 6 (1996), pp. 899-927
[Bhattacharyya et al., 1995]
S.P. Bhattacharyya, H. Chapellat, L.H. Keel.
Robust control.
Prentice-Hall Upper Saddle River, (1995),
[Boyd et al., 1994]
Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V., 1994. Linear matrix inequalities in system and control theory. No. 15 en SIAM studies in applied mathematics. SIAM.
[Chen et al., 2007]
C.-W. Chen, K. Yeh, W.-L. Chiang, C.-Y. Chen, D.-J. Wu.
Modeling, H control and stability analysis for structural systems using takagi-sugeno fuzzy model.
Journal of Vibration and Control, 13 (2007), pp. 1519-1534
[Chesi, 2011]
G. Chesi.
Domain of Attraction Analysis and Control Via Sos Programming.
Springer Verlag, (2011),
[Feng, 2006]
G. Feng.
A survey on analysis and design of model-based fuzzy control systems.
Fuzzy systems, IEEE Transactions on, 14 (2006), pp. 676-697
[Genesio et al., 1985]
Genesio, R., Tartaglia, M., Vicino, A., ago 1985. On the estimation of asymptotic stability regions: State of the art and new proposals. IEEE Trans. on Aut. Control 30 (8), 747-755.
[Goh et al., 1994]
Goh, K., Turan, L., Safonov, M., Papavassilopoulos, G., Ly, J., June 1994. Biaffine matrix inequality properties and computational methods. En: American Control Conference, 1994. Vol. 1. pp. 850-855 vol.1.
[Guerra et al., 2009]
T.M. Guerra, A. Kruszewski, J. Lauber.
Discrete Tagaki-Sugeno models for control: Where are we?.
Annual Reviews in Control, 33 (2009), pp. 37-47
[Hancock and Papachristodoulou, 2013]
Hancock, E.J., Papachristodoulou, A., feb 2013. Generalised absolute stability and sum of squares. Automatica.
[Jaadari, 2013]
Jaadari, A., 2013. Continuous quasi-LPV systems: how to leave the quadratic framework? Tesis doctoral, Université de Valenciennes et du Hainaut-Cambresis (France), Universitat Politècnica de València (Spain). URL: http://hdl.handle.net/10251/31379.
[Johansson and Rantzer, 1999]
Johansson, M., Rantzer, A., Arzen, K.-E., dec 1999. Piecewise quadratic stability of fuzzy systems. Fuzzy Systems, IEEE Transactions on 7, 713-722.
[Kanev et al., 2004]
Kanev, S., Scherer, C., Verhaegen, M., Schutter, B.D., 2004. Robust output-feedback controller design via local {BMI} optimization. Automatica 40 (7), 1115-1127.
[Khalil, 2002]
H.K. Khalil.
Nonlinear Systems.
3a Edición, Prentice Hall, (2002),
[Klug et al., 2015]
M. Klug, E.B. Castelan, D. Coutinho.
A T-S fuzzy approach to the local stabilization of nonlinear discrete-time systems subject to energy-bounded disturbances, Journal of Control.
Automation and Electrical Systems, 26 (2015), pp. 191-200
[Ksontini et al., 2003]
Ksontini, M., Delmotte, F., Guerra, T.-M., Kamoun, A., Oct 2003. Disturbance rejection using takagi-sugeno fuzzy model applied to an interconnected tank system. En: Systems, Man and Cybernetics, 2003. IEEE International Conference on. Vol. 4. pp. 3352-3357 vol. 4.
[Liu and Zhang, 2003]
X. Liu, Q. Zhang.
Approaches to quadratic stability conditions and H control designs for ts fuzzy systems.
Fuzzy Systems, IEEE Transactions on, 11 (2003), pp. 830-839
[Matía and Marichal, 2014]
Matía, F., Marichal, G.N., Jiménez, E. (Eds.), 2014. Fuzzy Modeling and Control: Theory and Applications. Vol. 9 of Atlantis Computational Intelligence Systems. Atlantis Press.
[Murphy, 2011]
G.M. Murphy.
Ordinary differential equations and their solutions.
Courier Dover Publications, (2011),
[Palhares and Peres, 2000]
R.M. Palhares, P.L. Peres.
Robust filtering with guaranteed energy-to-peak performance - an lmi approach.
Automatica, 36 (2000), pp. 851-858
[Pitarch et al., 2014]
Pitarch, J.L., Sala, A., Ariño, C.V., Apr 2014. Closed-form estimates of the domain of attraction for nonlinear systems via fuzzy-polynomial models. Cybernetics, IEEE Transactions on 44 (4), 526-538.
[Pitarch et al., 2012]
J.L. Pitarch, A. Sala, C.V. Ariño, F. Bedate.
Estimación del dominio de atracción de sistemas no lineales mediante modelos borrosos polinomiales. Revista Iberoamericana de Automática e Informática Industrial (RIAI), 9 (2012), pp. 152-161
[Pitarch et al., 2013]
Pitarch, J.L., Sala, A., Bedate, F., Ariño, C.V., Sep 2013. Inescapable-set estimation for nonlinear systems with non-vanishing disturbances. En: 3rd IFAC Inter. Conf. on Intelligent Control and Automation Science (ICONS). Chengdu, China, pp. 457-462.
[Sala, 2009]
A. Sala.
On the conservativeness of fuzzy and fuzzy-polynomial control of nonlinear systems.
Annual Reviews in Control, 33 (2009), pp. 48-58
[Salcedo et al., 2008]
J.V. Salcedo, M. Martínez, S. García-Nieto.
Stabilization conditions of fuzzy systems under persistent perturbations and their application in non-linear systems.
Engineering Applications of Artificial Intelligence, 21 (2008), pp. 1264-1276
[Scherer and Weiland, 2004]
Scherer, C., Weiland, S., 2004. Linear matrix inequalities in control. Notes for a course of the Dutch Institute of Systems and Control. URL: http://www.cs.ele.tue.nl/SWeiland/lmid.pdf.
[Slotine, 1991]
J.-J.E. Slotine.
Applied nonlinear control.
Prentice Hall, (1991),
[Tadeo and Grimble, 2002]
F. Tadeo, M. Grimble.
Advanced control of a hydrogen reformer.
Computing Control Engineering Journal, 13 (2002), pp. 305-314
[Tanaka and Wang, 2001]
Tanaka, K., Wang, H.O., 2001. Fuzzy control systems design and analysis: a linear matrix inequality approach, 2a Edición. Wiley-Interscience publication. John Wiley and Sons.
[Wang et al., 1996]
Wang, H., Tanaka, K., Griffin, M., feb 1996. An approach to fuzzy control of nonlinear systems: stability and design issues. Fuzzy Systems, IEEE Transactions on 4, 14-23.
[Wang and Liu, 2013]
L. Wang, X. Liu.
Local analysis of continuous-time Takagi-Sugeno fuzzy system with disturbances bounded by magnitude or energy: A Lagrange multiplier method.
Information Sciences, 248 (2013), pp. 89-102
Descargar PDF
Opciones de artículo