[Abedor et al., 1996]J. Abedor, K. Nagpal, K. Poolla.
A linear matrix inequality approach to peak-to-peak gain minimization.
International Journal of Robust and Nonlinear Control, 6 (1996), pp. 899-927
[Boyd et al., 1994]Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V., 1994. Linear matrix inequalities in system and control theory. No. 15 en SIAM studies in applied mathematics. SIAM.
[Chen et al., 2007]C.-W. Chen, K. Yeh, W.-L. Chiang, C.-Y. Chen, D.-J. Wu.
Modeling, H∞ control and stability analysis for structural systems using takagi-sugeno fuzzy model.
Journal of Vibration and Control, 13 (2007), pp. 1519-1534
[Chesi, 2011]G. Chesi.
Domain of Attraction Analysis and Control Via Sos Programming.
[Feng, 2006]G. Feng.
A survey on analysis and design of model-based fuzzy control systems.
Fuzzy systems, IEEE Transactions on, 14 (2006), pp. 676-697
[Genesio et al., 1985]Genesio, R., Tartaglia, M., Vicino, A., ago 1985. On the estimation of asymptotic stability regions: State of the art and new proposals. IEEE Trans. on Aut. Control 30 (8), 747-755.
[Goh et al., 1994]Goh, K., Turan, L., Safonov, M., Papavassilopoulos, G., Ly, J., June 1994. Biaffine matrix inequality properties and computational methods. En: American Control Conference, 1994. Vol. 1. pp. 850-855 vol.1.
[Guerra et al., 2009]T.M. Guerra, A. Kruszewski, J. Lauber.
Discrete Tagaki-Sugeno models for control: Where are we?.
Annual Reviews in Control, 33 (2009), pp. 37-47
[Jaadari, 2013]Jaadari, A., 2013. Continuous quasi-LPV systems: how to leave the quadratic framework? Tesis doctoral, Université de Valenciennes et du Hainaut-Cambresis (France), Universitat Politècnica de València (Spain). URL: http://hdl.handle.net/10251/31379.
[Johansson and Rantzer, 1999]Johansson, M., Rantzer, A., Arzen, K.-E., dec 1999. Piecewise quadratic stability of fuzzy systems. Fuzzy Systems, IEEE Transactions on 7, 713-722.
[Kanev et al., 2004]Kanev, S., Scherer, C., Verhaegen, M., Schutter, B.D., 2004. Robust output-feedback controller design via local {BMI} optimization. Automatica 40 (7), 1115-1127.
[Khalil, 2002]H.K. Khalil.
Nonlinear Systems.
3a Edición, Prentice Hall, (2002),
[Klug et al., 2015]M. Klug, E.B. Castelan, D. Coutinho.
A T-S fuzzy approach to the local stabilization of nonlinear discrete-time systems subject to energy-bounded disturbances, Journal of Control.
Automation and Electrical Systems, 26 (2015), pp. 191-200
[Ksontini et al., 2003]Ksontini, M., Delmotte, F., Guerra, T.-M., Kamoun, A., Oct 2003. Disturbance rejection using takagi-sugeno fuzzy model applied to an interconnected tank system. En: Systems, Man and Cybernetics, 2003. IEEE International Conference on. Vol. 4. pp. 3352-3357 vol. 4.
[Liu and Zhang, 2003]X. Liu, Q. Zhang.
Approaches to quadratic stability conditions and H∞ control designs for ts fuzzy systems.
Fuzzy Systems, IEEE Transactions on, 11 (2003), pp. 830-839
[Matía and Marichal, 2014]Matía, F., Marichal, G.N., Jiménez, E. (Eds.), 2014. Fuzzy Modeling and Control: Theory and Applications. Vol. 9 of Atlantis Computational Intelligence Systems. Atlantis Press.
[Murphy, 2011]G.M. Murphy.
Ordinary differential equations and their solutions.
Courier Dover Publications, (2011),
[Palhares and Peres, 2000]R.M. Palhares, P.L. Peres.
Robust filtering with guaranteed energy-to-peak performance - an lmi approach.
Automatica, 36 (2000), pp. 851-858
[Pitarch et al., 2014]Pitarch, J.L., Sala, A., Ariño, C.V., Apr 2014. Closed-form estimates of the domain of attraction for nonlinear systems via fuzzy-polynomial models. Cybernetics, IEEE Transactions on 44 (4), 526-538.
[Pitarch et al., 2012]J.L. Pitarch, A. Sala, C.V. Ariño, F. Bedate.
Estimación del dominio de atracción de sistemas no lineales mediante modelos borrosos polinomiales. Revista Iberoamericana de Automática e Informática Industrial (RIAI), 9 (2012), pp. 152-161
[Pitarch et al., 2013]Pitarch, J.L., Sala, A., Bedate, F., Ariño, C.V., Sep 2013. Inescapable-set estimation for nonlinear systems with non-vanishing disturbances. En: 3rd IFAC Inter. Conf. on Intelligent Control and Automation Science (ICONS). Chengdu, China, pp. 457-462.
[Sala, 2009]A. Sala.
On the conservativeness of fuzzy and fuzzy-polynomial control of nonlinear systems.
Annual Reviews in Control, 33 (2009), pp. 48-58
[Salcedo et al., 2008]J.V. Salcedo, M. Martínez, S. García-Nieto.
Stabilization conditions of fuzzy systems under persistent perturbations and their application in non-linear systems.
Engineering Applications of Artificial Intelligence, 21 (2008), pp. 1264-1276
[Scherer and Weiland, 2004]Scherer, C., Weiland, S., 2004. Linear matrix inequalities in control. Notes for a course of the Dutch Institute of Systems and Control. URL: http://www.cs.ele.tue.nl/SWeiland/lmid.pdf.
[Tadeo and Grimble, 2002]F. Tadeo, M. Grimble.
Advanced control of a hydrogen reformer.
Computing Control Engineering Journal, 13 (2002), pp. 305-314
[Tanaka and Wang, 2001]Tanaka, K., Wang, H.O., 2001. Fuzzy control systems design and analysis: a linear matrix inequality approach, 2a Edición. Wiley-Interscience publication. John Wiley and Sons.
[Wang et al., 1996]Wang, H., Tanaka, K., Griffin, M., feb 1996. An approach to fuzzy control of nonlinear systems: stability and design issues. Fuzzy Systems, IEEE Transactions on 4, 14-23.
[Wang and Liu, 2013]L. Wang, X. Liu.
Local analysis of continuous-time Takagi-Sugeno fuzzy system with disturbances bounded by magnitude or energy: A Lagrange multiplier method.
Information Sciences, 248 (2013), pp. 89-102