covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Diseño y sintonización de una ley de control borrosa proporcional retardada: e...
Información de la revista
Vol. 12. Núm. 4.
Páginas 467-475 (octubre - diciembre 2015)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
3091
Vol. 12. Núm. 4.
Páginas 467-475 (octubre - diciembre 2015)
Open Access
Diseño y sintonización de una ley de control borrosa proporcional retardada: enfoque frecuencial
Design and tuning of a fuzzy proportional retarded controller: frequency approach
Visitas
3091
R. Villafuertea,b,c,
Autor para correspondencia
villafuerte@uaeh.edu.mx

Autor para correspondencia.
, J.A. Ortega Meloa,b,c
a Universidad Autónoma del Estado de Hidalgo (UAEH)
b Centro de Investigación en Tecnologías de Información y Sistemas (CITIS)
c Carr. Pachuca-Tulancingo Km. 4.5 s/n Col. Carboneras, Mineral de la Reforma, Hidalgo, México, C.P. 42184
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

Los retardos son por lo general un fenómeno indeseable en los procesos de control, debido a que estos pueden inestabilizar o producir un desempeño deficiente en la respuesta de un sistema. Sin embargo, los retardos también tienen la propiedad de coadyuvar a su estabilización. El presente artículo se beneficia de esta propiedad al proponer el diseño y sintonización de una ley de control borrosa proporcional retardada (BPR) para estabilizar una clase de sistemas no lineales. En este marco, la estabilidad del sistema no lineal se garantiza mediante la σ-estabilización de su modelo borroso del tipo Takagi-Sugeno (TS) en lazo cerrado con la ley de control BPR. El diseño del controlador BPR se propone a partir de la inclusión de una acción retardada en la estructura clásica, mientras que la sintonización del mismo se realiza asegurando σ-estabilidad sobre cada uno de los susbsistemas del modelo borroso empleando el método D-particiones. La σ-estabilización del sistema TS-BPR se garantiza mediante un análisis del lugar geométrico de las ráıces de su cuasipolinomio característico. La metodología sólo es aplicable a sistemas no lineales que se puedan modelar mediante subsistemas borrosos lineales de segundo orden. El diseño y la sintonización del controlador BPR se ejemplifican sobre una plataforma experimental carro-péndulo. El desempeño del BPR es comparado con una clásica compensación paralela

Palabras clave:
Sistemas de control no-lineal
sistemas borrosos
sistemas con retardos
controlador borroso PR.
Abstract

The time delays are usually an undesirable phenomenon in the control processes, because these can induce instability or a poor performance in the system. However, the time delays have the property of assisting in stabilizing. This article benefiting from this property to propose the design and tuning of a fuzzy proportional retarded controller (BPR) to stabilize a class of nonlinear systems. In this frame, the stabilization of a nonlinear system is guaranteed through the σ-stability of its Takagi-Sugeno (TS) fuzzy model in close-loop with BPR controller. The BPR controller design is based on inclusion a retarded action in the conventional structure. While the tuning of the BPR control law, has been addressed in the frequency approach using D-partition method. The stability of TS-BPR fuzzy system is ensured by analazing the root locus of its characteristic quasipolynomial. The design and tuning of BPR controller are exemplified on a car-pendulum experimental platform. The performance of BPR is compared with a parallel distributed compensation classic.

Keywords:
Control nonlinear systems
fuzzy systems
time delay systems
fuzzy control PR.
Referencias
[Abdallah et al., 1993]
Abdallah, C., Dorato, P., Benites-Read, J., Byrne, R., 1993. Delayed positive feedback can stabilize oscillatory systems. En: American Control Conference, 1993. pp. 3106-3107.
[Aracil and Gordillo, 2005]
J. Aracil, F. Gordillo.
El péndulo invertido: un desafio para el control no lineal.
RIAI, 2 (2005), pp. 8-19
[Aranda et al., 2014]
Aranda, E., Guinaldo, M., Santos, M., Dormido, S., 2014. Fuzzy logic vs analytic controllers on non-linear system. En: 11th International FLINS Conference on Decision Making and Soft Computing.
[Berghuis and Nijmeijer, 1993]
H. Berghuis, H. Nijmeijer.
Global regulation of robots using only position measurements.
Systems & control letters, 21 (1993), pp. 289-293
[Cao and Frank, 2000]
Y.-Y. Cao, P. Frank.
Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach.
Fuzzy Systems, IEEE Transactions on, 8 (2000), pp. 200-211
[Chiang, 2006]
Chiang, C.-C., 2006. Decentralized robust fuzzy-model-based control of uncertain large-scale systems with input delay. En: Fuzzy Systems, 2006 IEEE International Conference on. pp. 498-505.
[Cooke and Grossman, 1982]
K.L. Cooke, Z. Grossman.
Discrete delay, distributed delay and stability switches.
Journal of Mathematical Analysis and Applications, 86 (1982), pp. 592-627
[Dellnitz et al., 2002]
M. Dellnitz, O. Schutze, Q. Zheng.
Locating all the zeros of an analytic function in one complex variable.
Computational and Applied Mathematics, 138 (2002), pp. 325-333
[Gu et al., 2003]
Gu, K., Chen, J., Kharitonov, V., 2003. Stability of Time-Delay Systems. Addison-Wesley series in electrical and computer engineering: Control engineering. SPRINGER VERLAG NY.
[Guinaldo et al., 2010]
Guinaldo, M., Vargas, H., J., S., Sanz, E., Dormido, S., 2010. Web-based control laboratory: The ball and beam system. 9th Portuguese Conference on Automatic Control.
[Hale and Verduyn, 1993]
J. Hale, S. Verduyn.
Introduction to functional differential equations.
Springer-Verlag, (1993),
[Hang et al., 1991]
C.-C. Hang, K. Astrom, W.K. Ho.
Refinements of the ziegler-nichols tuning formula.
Control Theory and Applications, IEE Proceedings D, 138 (1991), pp. 111-118
[Huang et al., 2007]
Huang, Y., Kuo, T., Lee, H., 2007. Fuzzy-pd controller design with stability equations for electro-hydraulic servo systems. En: Control, Automation and Systems, 2007. ICCAS ‘07. International Conference on. pp. 2407-2410.
[Kelly et al., 1994]
R. Kelly, R. Ortega, A. Ailon, A. Loria.
Global regulation of flexible joint robots using approximate differentiation.
Automatic Control, IEEE Transactions on, 39 (1994), pp. 1222-1224
[Leghmizi and Sheng, 2012]
Leghmizi, S., Sheng, L., 2012. Takagi-sugeno fuzzy pd controller for a 3-dof stabilized platform. En: Intelligent Control and Automation (WCICA), 2012 10th World Congress on. pp. 108-112.
[Lin et al., 2009]
Lin, C.-Y., Hanh, L.D., Chiu, Y.-P., 2009. Catching algorithm for 2d robot manipulator using pd controller. En: ICCAS-SICE, 2009. pp. 46-50.
[Michiels and Niculescu, 2007]
Michiels, W., Niculescu, S.-L., 2007. Stability and stabilization of time-delay systems: An eigenvalue-based approach. SIAM, Philadelphia.
[Mondié et al., 2011]
Mondié, S., Villafuerte, R., Garrido, R., 2011. Tuning and noise attenuation of a second order system using proportional retarded control. En: 18th IFAC World Congress, Milano, Italy.
[Neimark, 1949]
J. Neimark.
D-subdivisions and spaces of quasi-polynomials.
Prikl. Mat. Meh., 13 (1949), pp. 349-380
[Nicosia and Tomei, 1994]
Nicosia, S., Tomei, P., 1994. A tracking controller for flexible joint robots using only link position feedback. En: Decision and Control, 1994., Proceedings of the 33rd IEEE Conference on. pp. 1817-1822.
[Simhachalam et al., 2012]
Simhachalam, D., Dey, C., Mudi, R., 2012. An auto-tuning pd controller for dc servo position control system. En: Power, Control and Embedded Systems (ICPCES), 2012 2nd International Conference on. pp. 1-6.
[Slotine and Li, 1991]
J.J.E. Slotine, W. Li.
Applied Nonlinear Control.
Prentice-Hall, Inc, (1991),
[Spong, 1998]
M.W. Spong.
Underactuated mechanical systems.
Lecture Notes in Control and Information Sciences, (1998),
[Suh and Bien, 1979]
I. Suh, Z. Bien.
Proportional minus delay controller.
Automatic Control, IEEE Transactions on, 24 (1979), pp. 370-372
[Suh and Bien, 1980]
I.-H. Suh, Z. Bien.
Use of time-delay actions in the controller design.
Automatic Control, IEEE Transactions on, 25 (1980), pp. 600-603
[Swisher and Tenqchen, 1988]
Swisher, G.M., Tenqchen, S., 1988. Design of proportional-minus-delay action feedback controllers for second- and third-order systems. En: American Control Conference, 1988. pp. 254-260.
[Tanaka and Wang, 2001]
K. Tanaka, H.O. Wang.
Fuzzy Control Systems Design and Analysis.
Jonh Wiley & Sons, Inc, (2001),
[Villafuerte et al., 2013]
R. Villafuerte, S. Mondie, R. Garrido.
Tuning of proportional retarded controllers: Theory and experiments.
Control Systems Technology, IEEE Transactions on, 21 (2013), pp. 983-990
[Wang and Hu, 2008]
Z. Wang, H. Hu.
Calculation of the rightmost characteristic root of retarded time-delay systems via lambert w function.
Journal of Sound and Vibration, 318 (2008), pp. 757-767
[Zhao and Gao, 2012]
Y. Zhao, H. Gao.
Fuzzy-model-based control of an overhead crane with input delay and actuator saturation.
Fuzzy Systems, IEEE Transactions on, 20 (2012), pp. 181-186
[Zhao et al., 2009]
Y. Zhao, H. Gao, J. Lam, B. Du.
Stability and stabilization of delayed t–s fuzzy systems: A delay partitioning approach.
Fuzzy Systems, IEEE Transactions on, 17 (2009), pp. 750-762
[Zhong and Li, 2002]
Zhong, Q.C., Li, H.X., 2002. A delay-type pid controller. 15th Triennial World Congress, Barcelona, Spain.
[Ziegler and Nichols, 1942]
J.G. Ziegler, N.B. Nichols.
Optimum settings for automatic controllers.
Transactions of the A. S. M. E., 230 (1942), pp. 135-150
Descargar PDF
Opciones de artículo