covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Estimación y Control Distribuidos de Sistemas sobre Redes de Comunicación
Información de la revista
Vol. 11. Núm. 4.
Páginas 377-388 (octubre 2014)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 11. Núm. 4.
Páginas 377-388 (octubre 2014)
Open Access
Estimación y Control Distribuidos de Sistemas sobre Redes de Comunicación
Distributed Estimation and Control Systems over Communication Networks
Visitas
3388
Francisco R. Rubioa, Pablo Millánb, Luis Orihuelab, Carlos Vivasa
a Dpto. Ingeniería de Sistemas y Automática, Escuela Técnica Superior de Ingenieros. Universidad de Sevilla Camino Descubrimientos, s/n., 41092 Sevilla, España
b Dpto. Matemáticas e Ingeniería, Escuela Técnica Superior de Ingenieros. Universidad Loyola Andalucía Calle Energía Solar, 1, 41014 Sevilla, España
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Abstract

This paper's aim is to present a novel design technique for distributed control and estimation in networked systems. The proposed problem considers a large scale, discrete LTI process controlled by a network of agents that may both, collect information about the evolution of the plant, and apply control actions to drive its behavior. The problem makes full sense when local observability/controllability is not assumed and the communication between agents can be exploited to reach system-wide goals, including energy efficiency in these communications. The objective is to provide a fully distributed estimation&control scheme that stabilizes the plant while the upper bound of a given quadratic performance index is minimized.

The paper analyzes two different sampling schemes, periodic and event-driven, providing stability proofs based on Lyapunov theory and design methods in terms of LMIs. Experimental results on a four couple tanks system are provided to show the performance of the proposed methodologies.

Keywords:
Networked Control System
Distributed Estimation
Distributed Control
Resumen

Este trabajo presenta una técnica de diseño novedosa para la estimación y control distribuido de sistemas en red. Se considera un proceso discreto de gran escala controlado por una red de agentes que pueden recopilar información acerca de la evolución de la planta y aplicar las acciones de control para mejorar su comportamiento. El diseño propuesto es de especial interés cuando no se tiene observabilidad/controlabilidad local, de forma que es necesario utilizar la comunicación entre agentes para tener suficiente información dinámica del sistema. El objetivo global es diseñar un esquema de control y estimación distribuida, de forma que se obtengan estimaciones fiables por parte de los agentes así como un desempeño de control adecuado. El trabajo analiza dos esquemas diferentes de comunicación entre agentes, muestreo periódico y basado en eventos, proporcionando pruebas de estabilidad utilizando el criterio de Lyapunov y métodos de diseño en términos de desigualdades matriciales lineales LMIs (del inglés, Linear Matrix Inequalities). Se muestran resultados experimentales sobre un sistema de cuatro tanques para demostrar la eficacia de las metodologías propuestas.

Palabras clave:
Control a través de redes
Estimación distribuida
Control distribuido
Bibliography
[1]
Wireless sensor networks: a survey. Computer networks. 2002; 38(4):393-422.
[2]
A comparative analysis of distributed MPC techniques applied to the HD-MPC four-tank benchmark. Journal of Process Control. 2011; 21(5):800-15.
[3]
Time-varying feedback laws for de-centralized control. IEEE Transactions on Automatic Control. 1981; 26(5):1133-9.
[4]
Interconnected dynamic systems: An overview on distributed control. IEEE Control Systems Magazine. 2013; 33(1):76-88.
[5]
Briñón Arranz, L., Seuret, A., Canudas de Wit, C., December 2009. Translation control of a fleet circular formation of AUVs under finite communication range. In: 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference. Shangai, China, pp. 8345-8350.
[6]
Distributed model predictive control. IEEE Control Systems. 2002; 22(1):44-52.
[7]
Coverage control form mobile sensing networks. IEEE Transactions on Robotic and Automation. 2004; 20(2):243-55.
[8]
Distributed control design for spatially interconnected systems. IEEE Transactions on Automatic Control. 2003; 48(9):1478-95.
[9]
Decentralized stabilization and pole assignment for general proper systems. IEEE Transactions on Automatic Control. 1990; 35(6):652-64.
[10]
On the stabilization of decentralized control systems. IEEE Transactions on Automatic Control. 1973; 18(5):473-8.
[11]
Output-based event-triggered control with guaranteed l-gain and improved and decentralized event-triggering. IEEE Transactions on Automatic Control. 2012; 57(6):1362-76.
[12]
Muestreo, control y comunicación basado en eventos. Revista Iberoamericana de Automática e Informática Industrial. 2008; 5(1):5-26.
[13]
Distributed receding horizon control of dynamically coupled nonlinear systems. IEEE Transactions on Automatic Control. 2007; 52(7):1249-63.
[14]
A cone complementary linearization algorithm for static output-feedback and related problems. IEEE Transactions on Automatic Control. 1997; 42(8):1171-6.
[15]
Estrin, D., Govindan, R., Heidemann, J., Kumar, S., August 1999. Next century challenges: scalable coordination in sensor networks. In: 5th ACM/IEEE International Conference on Mobile Computing and Networking. Seattle, WA, USA, pp. 263-270.
[16]
Distributed event-based control strategies for interconnected linear systems. IET Control Theory and Applications. 2013; 7(6):877-86.
[17]
Periodic event-triggered control for linear systems. IEEE Transactions on Automatic Control. 2013; 58(4):847-61.
[18]
Analysis of event-driven controllers for linear systems. International Journal of Control. 2008; 81(4):571-90.
[19]
Iftar, A., August 1991. Decentralized optimal control with overlapping decompositions. In: IEEE International Conference on Systems Engineering. Dayton, Ohio, USA, pp. 299-302.
[20]
Overlapping decentralized dynamic optimal control. International Journal of Control. 1993; 58(1):187-209.
[21]
Instruments, F., 2012. Data Sheet: 33-041 Coupled Tank System for Matlab.
[22]
The quadruple-tank process: a multivariable laboratory process with an adjustable zero. IEEE Transactions on Control Systems Technology. 2000; 8(3):456-65.
[23]
Lee, J., Su, Y., Chung-Chou, S., 2007. A comparative study of wireless protocols: Bluetooth, UWB, Zigbee, and Wi-Fi, 46-51.
[24]
Mobile sensor networks for modelling environmental pollutant distribution. International Journal of Systems Science. 2011; 42(9):1491-505.
[25]
A state-feedback approach to event-based control. Automatica. 2010; 46:211-5.
[26]
Lynch, J.P., Law, K.H., Blume, J.A., February 2002. Decentralized control techniques for large-scale civil structural systems. In: 20th International Modal Analysis Conference. Los Angeles, CA, USA, pp. 4-7.
[27]
Maestre, J.M., Negenborn, R., 2013. Distributed model predictive control made easy.
[28]
Millán, P., 2012. Robust analysis and design of networked control systems with applications. Ph.D. thesis, Universidad de Sevilla.
[29]
Control óptimo-L2 basado en red mediante funcionales de Lyapunov-Krasovskii. Revista Iberoameri-cana de Automática e Informática Industrial. 2012; 9(1):14-23.
[30]
Multi-agent model predictive control for transportation networks: Serial versus parallel schemes. Engineering Applications of Artificial Intelligence. 2008; 21(3):353-66.
[31]
Olfati-Saber, R., December 2005. Distributed Kalman filter with embedded consensus filters. In: 44th IEEE Conference on Decision and Control and the European Control Conference. Seville, Spain, pp. 8179-8184.
[32]
Orihuela, L., Millán, P., Vivas, C., Rubio, F.R., 2013. H2/H∞ control for discrete TDS with application to networked control systems: periodic and asyn-chronous communication. Optimal Control Applications and Methods, doi:. 10.1002/oca.2101.
[33]
Kalman filter-based distributed predictive control of large-scale multi-rate systems: Application to power networks. IEEE Transactions on Control Systems Technology. 2013; 21(1):27-39.
[34]
Sistemas de control basados en red. modelado y diseño de estructuras de control. Revista Iberoamericana de Automática e Informática Industrial. 2008; 5(3):5-20.
[35]
Architectures for distributed and hierarchical Model Pre-dictive Control - a review. Journal of Process Control. 2009; 19(5):723-31.
[36]
Control of large-scale systems: Beyond de-centralized feedback. Annual Reviews in Control. 2005; 29(2):169-79.
[37]
Event-triggered real-time scheduling of stabilizing. IEEE Transactions on Automatic Control. 2007; 52(9):1680-5.
[38]
Venkat, A.N., Rawlings, J.B., Wright, S.J., December 2005. Stability and optimality of distributed model predictive control. In: 44th IEEE Conference on Decision and Control and European Control Conference. Sevilla, Spain, pp. 6680-6685.
[39]
Xiao, L., Boyd, S., Lall, S., April 2005. A scheme for robust distributed sensor fusion based on average consensus. In: 4th International Symposium on Information Processing in Sensor Networks. Los Angeles,California,USA, pp. 4209-4214.
[40]
Network-based robust H control of systems with uncertainty. Automatica. 2005; 41(6):999-1007.
[41]
A delay system method for designing event-triggered controllers of networked control systems. IEEE Transactions on Automatic Control. 2013; 58(2):475-81.
Descargar PDF
Opciones de artículo