Las técnicas de reducción de ruido son ampliamente utilizadas en la grabación de audio, la edición de imágenes y en el procesamiento de señales industriales. La idea es reconstruir los datos originales a partir de la señal ruidosa suprimiendo toda, o casi toda, la distorsión generada por el ruido inherente a los procesos físicos. En el presente trabajo se realiza una comparación de diferentes métodos de supresión de ruido que se basan en la selección adaptativa del umbral. Estas técnicas han sido usadas extensivamente en el procesamiento de imágenes pero el objetivo de este trabajo es evaluar su rendimiento en la reducción de ruido de señales industriales. En particular se analiza el comportamiento de los métodos Bayes Shrink, Normal Shrink, Modified Shrink y Neight Shrink para la reducción de ruido gaussiano en estas señales. A tales efectos se utilizó un conjunto de señales patrón, que incluye a las señales propuestas por Donoho y otras mediciones representativas obtenidas de procesos reales en las plantas de Níquel cubanas. Las pruebas realizadas revelan que el algoritmo Neigh Shrink es el que mejor se comporta en los datos analizados.
Noise reduction techniques are widely used for audio recording, image editing, and industrial signal processing. The idea is to reconstruct the original data from the noise-corrupted signal suppressing, all or almost all, the distortion caused by the inherent noise of the physical processes. In the present paper, we perform a comparative review of several noise reduction techniques based on adaptive threshold selection. These techniques have been extensively used for image processing. However, we aimed at evaluating their performance for industrial signal noise reduction. In particular, we analyze the behaviour of the Bayes Shrink, Normal Shrink, Modified Shrink, and Neight Shrink methods for the reduction of the Gaussian noise in industrial signals. To that aim, we perform experiments on a set of pattern signals proposed by Donoho and other representative measurements obtained from real processes in Cuban1s Nickel plants. Our results indicate that, for this kind of data, the Neigh Shrink algorithm outperforms.