covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Análisis del deslizamiento en el punto de apoyo de un robot bípedo de 5-gdl
Información de la revista
Vol. 10. Núm. 2.
Páginas 133-142 (abril - junio 2013)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
4732
Vol. 10. Núm. 2.
Páginas 133-142 (abril - junio 2013)
Open Access
Análisis del deslizamiento en el punto de apoyo de un robot bípedo de 5-gdl
Sliding analysis on the support point of a 5-dof biped robot
Visitas
4732
J.A. Vazquez
Autor para correspondencia
javazquez@cinvestav.mx

Autor para correspondencia.
, M. Velasco-Villa
CINVESTAV-IPN, Departamento de Ingeniería Eléctrica Sección de Mecatrónica, A.P. 14-740, 07000, México D.F., México
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

En los análisis de los diversos problemas que la locomoción bípeda representa, es común la consideración de hipótesis específicas para evaluar el desempeño de un robot en un ambiente de trabajo particular. Una de estas hipótesis consiste en omitir un eventual deslizamiento, que puede existir entre los puntos o superficies de contacto de un robot bípedo con el suelo. Aunque en situaciones prácticas esta dinámica puede ser despreciable, la velocidad relativa generada por un posible deslizamiento depende tanto de las características de fricción en el punto de contacto, como de la misma dinámica del sistema. Este trabajo se enfoca en el análisis de la dinámica de deslizamiento de un robot bípedo en su punto de apoyo durante la ejecución de su ciclo de marcha. Se considera un robot sólo con articulaciones de rodilla y cadera en cada pata, por lo que, dada la ausencia de articulación de tobillo, el contacto con la superficie es considerado puntual. Se desarrollan algunas expresiones analíticas para determinar las condiciones del fenómeno de deslizamiento al considerar un grado de libertad adicional de tipo traslacional en el extremo de la pata de apoyo.

Palabras clave:
Robótica
Fricción viscosa
Modelo dinámico
Control basado en modelo
Abstract

Most of the works which deal with biped robots, consider certain assumptions to evaluate their strategies in order to get a specific objective. One of these assumptions considers a non slip condition, which implies that the contact point with the walking surface does not move along the walking axis. Although, in realistic terms, this movement could be negligible, it depends on the friction characteristics between the points of contact. This work is focused on the slip dynamic analysis of the support contact point and leads to analytical expressions to determine conditions of the slip phenomenon. This is done by considering an additional degree of freedom at the end of the supporting leg in the walking cycle.

Keywords:
Robotics
Viscous friction
Model based control
Referencias
[Azevedo et al., 2004]
C. Azevedo, N. Andreff, S. Arias.
Bipedal walking: from gait design to experimental analysis.
Mechatronics, 14 (2004), pp. 639-665
[Bhat and Bernstein, 1998]
S. Bhat, D. Bernstein.
Continuous finite-time satabilization of the translational and rotational double integrators.
IEEE Transactions on Automatic Control, 43 (1998), pp. 678-682
[Chemori and Loria, 2002]
Chemori, A., Loria, A., 2002. Control of a planar five link under-actuated biped robot on a complete walking cycle. In: IEEE Conf. on Dec. and Ctrl. Las Vegas, Nevada, USA, pp. 2056-2061.
[Djoudi and Chevallereau, 2005]
D. Djoudi, C. Chevallereau.
Stability analysis of a walk of a biped robot with control of the ZMP. In: Int. Conf. on Intelligent Robots and Systems.
Alberta, Canada, (2005), pp. 2461-2467
[Ferreira et al., 2009]
J. Ferreira, M. Crisostomo, A. Coimbra.
Human-like zmp trajectory refrence in sagittal plane for a biped robot.
In: Int. Conf. on Advanced Robotics. Munich, Germany, (2009), pp. 1-6
[Goswami, 1999]
A. Goswami.
Postural stability of biped robots and the foot rotation indicator (FRI) point.
Int, Journal of Robotics Research, 18 (1999), pp. 523-533
[Grizzle et al., 2001]
J.W. Grizzle, G. Abba, F. Plestan.
Asymptotically stable walking for biped robots: Analysis via systems with impulse effects.
IEEE Tran. Automatic Control, 46 (2001), pp. 51-64
[Hurmuzlu and Marghitu, 1994]
Y. Hurmuzlu, D.B. Marghitu.
Rigid body collissions of planar kinematic chains with multiple contact points.
Int. Journal Robotics Research, 13 (1994), pp. 82-92
[Kajita et al., 2004]
S. Kajita, K. Kaneko, K. Harada, F. Kanehiro, K. Fujiwara, H. Hirukawa.
Biped walking on a low friction floor. In: Int. Conf. on Intelligent Robots and Systems.
Sendai, Japan, (2004), pp. 3546-3552
[Kaneko et al., 2005]
K. Kaneko, F. Kanehiro, S. Kajita, M. Morisawa, K. Fujiwara, K. Harada, H. Hirukawa.
Slip observer for walking on a low friction floor.
In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems., (2005), pp. 1457-1463
[Kim and Park, 2011]
J.T. Kim, J.H. Park.
Quick change of walking direction of biped robot with foot slip in single-support phase.
In: 11th IEEE-RAS Int. Conf. on Humanoids Robots. Bled, Slovenia, (2011), pp. 339-344
[Kuffner et al., 2002]
J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba, H. Inoue.
Dynamically stable motion generator for human robots.
Autonomous Robots (Special issue on Humanoid Robotics), 12 (2002), pp. 105-118
[Kurt and Erbatur, 2006]
O. Kurt, K. Erbatur.
Biped robot reference generation with natural ZMP trajectories.
In: IEEE International Workshop on Advanced Motion Control., (2006), pp. 403-410
[Miura and Shimoyama, 1984]
H. Miura, I. Shimoyama.
Dynamic walk of a biped.
Int, Journal of Robotics Research, 3 (1984), pp. 60-74
[Miura et al., 2012]
K. Miura, F. Kanehiro, K. Kaneko, S. Kajita, K. Yokoi.
Quick slipturn of HRP-4C on its toes. In: IEEE Int. Conf. on Robotics and Automation.
RiverCentre, Saint Paul, (2012),
[Morris and Grizzle, 2005]
Morris, B., Grizzle, J.W., December 2005. A restricted poincare map for determinig exponentially stable periodic orbits in systems with impulse effects: Application to bipedal robots. In: IEEE Conf. on Dec. and Ctrl. pp. 4199-4206.
[Olfati-Saber, 2000]
R. Olfati-Saber.
Cascade normal forms for underactuaded mechanical systems.
In: IEEE Conf. on Dec. and Ctrl. Sydney, Australia, (2000), pp. 2162-2167
[Park and Kim, 1998]
J.H. Park, K.D. Kim.
Biped robot walking using gravity-compensated inverted pendulum mode and computed torque control.
In: IEEE Int. Conf. Robotics and Automation. Leuven, Belgium, (1998), pp. 3528-3533
[Plestan et al., 2003]
F. Plestan, J.W. Grizzle, E. Westervelt, G. Abba.
Stable walking of a 7-DOF biped robot.
IEEE Tran. Robotics and Automation, 19 (2003), pp. 653-668
[Sardain and Bessonnet, 2004]
P. Sardain, G. Bessonnet.
Forces acting on a biped robot. center of pressure-zero moment point.
IEEE Tran. Sys. Man and Cybernetics-Part A; Systems and humans, 34 (2004), pp. 630-637
[Silva and Machado, 2004]
F. Silva, J.T. Machado.
Towards force interaction control of biped walking robots.
In: IEEE Int. Conf. Intelligent Robots and Systems. Sendai, Japan, (2004), pp. 2568-2573
[Sinnet et al., 2011]
R. Sinnet, M. Powell, R. Shah, A.D. Ames.
A human-inspired hybrid control approach to bipedal robotic walking.
In: 18th IFAC World Congress. Milano, Italy, (2011), pp. 2568-2573
[Spong, 1994]
M. Spong.
The control of underactuated mechanical systems.
First International Conference on Mechatronics,
[Spong and Vidyasagar, 1989]
M.W. Spong, M. Vidyasagar.
Robot Dynamics and Control.
John Wiler and Sons, (1989),
[Takenaka et al., 2009]
Takenaka, T., Matsumoto, T., Yoshiike, T., 2009. Real time motion generation and control for biped robot, first report: Walking gait pattern generation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. St. Louis, USA, pp. 1084-1091.
[Vazquez and Velasco-Villa, 2010]
J.A. Vazquez, M. Velasco-Villa.
Approximate slipping effects analysis and compensation on a biped robot.
Int. Conf. on Electrical Engineering Computing Science and Automatic Control, pp. 464-469
[Vazquez and Velasco-Villa, 2011]
J.A. Vazquez, M. Velasco-Villa.
Supporting leg sliding analysis of a 5-DOF biped robot under friction force.
Annual Conference on IEEE Industrial Electronics Society, pp. 289-294
[Wang, 1986]
Wang, Y., 1986. On impact dynamics of robotics operations. Internal report, Department of Mechanical Engineering and The Robotics Institute Carnegie- Mellon University.
Descargar PDF
Opciones de artículo