covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Ìndices de Desempeño de Robots Manipuladores: una revisión del Estado del Art...
Información de la revista
Vol. 9. Núm. 2.
Páginas 111-122 (abril - junio 2012)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
7391
Vol. 9. Núm. 2.
Páginas 111-122 (abril - junio 2012)
Open Access
Ìndices de Desempeño de Robots Manipuladores: una revisión del Estado del Arte
Performance Indices for Robotic Manipulators: a review of the State of the Art
Visitas
7391
Héctor A. Moreno
Autor para correspondencia
hmoreno@etsii.upm.es

Autor para correspondencia.
, Roque Saltaren, Isela Carrera, Lisandro Puglisi, Rafael Aracil
Centro de Automática y Robótica,UPM-CSIC. C/ Josó Gutiérrez Abascal, 2. 28006. Madrid, España
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

Los ìndices de desempeño son importantes herramientas para la planificación de movimientos y el diseño de robots manipuladores. En este trabajo se presenta una colección de algunos de los ìndices de desempeño que mayor interés han generado en la comunidad dedicada a la robótica. Se presentan ìndices de desempeño cinetostático, dinámico, de lìmites articulares, e ìndices definidos sobre el espacio de trabajo. Además, se realiza una revisión sobre las estrategias que se han propuesto para solventar los problemas que aparecen cuando las unidades de los elementos de la matriz Jacobiana no son homogéneas. Al final de este trabajo, proponemos una serie ìndices de desempeño globales que pueden resultar útiles en el diseño de robots manipuladores.

Palabras clave:
Ìndices de desempeño
Cinetostático
Dinámico
Limites Articulares
Globales
Abstract

The performance indices are important tools for motion planning and design of robot manipulators. In this paper we present a collection of some of the performance indices that have generated interest in the robotics community. These indices are four different types: kinetostatic performance indices, dynamic performance indices, indices of joint limits, and finally global performance indices. In addition, we review the strategies that have been proposed to solve the problems that occur when the units of the Jacobian matrix elements are not homogeneous. At the end of this paper, we propose a set of global performance indices that can be useful in the design of robot manipulators.

Keywords:
Performance Indices
Kinetostatic
Dynamic
Joint Limits
Global
Referencias
[Alba et al., 2005]
Alba, O. Wenger, P. y. P. J., 2005. Consistent kinetostatic indices for planar 3-dof parallel manipulators, application to the optimal kinematic inversion. In: Proceedings of the ASME DETC. pp. 765-774.
[Angeles, 2007]
Angeles, J., 2007. Fundamentals of Robotic Mechanical Systems, Theory, Methods, and Algorithms. Springer.
[Asada, 1983]
H. Asada.
A geometrical representation of manipulator dynamics and its application to arm design, Journal of Dynamic Systems.
Measurement, and Control, 150 (1983), pp. 131-142
[Baron, 2000]
Baron, L., May 2000. A joint-limit avoidance strategy for arc-welding robots. In: International Conference on Integrated Design and Manufacturing in Mechanical Engineering.
[Baron and Bernier, 2001]
Baron L. y Bernier, G., 2001. The design of parallel manipulators of star topology under isotropic constraint. In: Proc. DETC ASME.
[Bestard and Wiens, 2007]
Bestard, J. y Wiens, G., Jun. 2007. Manipulability based path and trajectory planning for hybrid mobility climbing. In: 12th IFToMM World Congress.
[Bicchi et al., 1995]
A. Bicchi, C.B.D. Melchiorri.
On the mobility and manipulability of general multiple limb robots.
IEEE Transactions on Robotics and Automation, 11 (1995), pp. 215-228
[Bonev and Ryu, 2001]
I. Bonev, J. Ryu.
A new approach to orientation workspace analysis of 6-dof parallel manipulators.
Trans. ASME, Journal of Mechanical Design, 36 (2001), pp. 15-28
[Carretero and N¿ ahon, 2000]
J. Carretero, M.P.R. N¿ ahon.
Workspace analysis and optimization of a novel 3-dof parallel manipulator.
International Journal of Robotics and Automation, 15 (2000), pp. 178-188
[Chablat and Wenger, 2003]
D. Chablat, P. Wenger.
Architecture optimization of a 3-dof parallel mechanism for machining applications, the orthoglide.
IEEE Transactions on Robotics and Automation, 19 (2003), pp. 403-410
[Chablat et al., 2002]
Chablat, D. Wenger, P.C. S. y. A. J., 2002. The isoconditioning loci of planar three-dof parallel manipulators. In: Proc. DETC ASME.
[Chablat et al., 1998a]
Chablat, D. Wenger, P. y. A. J., 1998a. The isoconditioning loci of a class of closed-chain manipulators. In: Proc. IEEE International Conference on Robotics and Automation. pp. 1970-1976.
[Chablat et al., 1998b]
Chablat, D. Wenger, P. y. A. J., 1998b. Working modes and aspects in fullyparallel manipulators. In: Proc. IEEE International Conference on Robotics and Automation. pp. 1964-1969.
[Chiu, 1988]
S. Chiu.
Task compatibility of manipulator postures.
The International Journal of Robotics Research, 7 (1988), pp. 13-21
[Craig, 2005]
J. Craig.
Introduction to Robotics.
Prentice Hall, (2005),
[Di Gregorio, 2006]
R. Di Gregorio.
Dynamic model and performances of 2-dof manipulators.
Robotica, 24 (2006), pp. 51-60
[Di Gregorio and Parenti-Castelli, 2002]
Di Gregorio, R. y Parenti-Castelli, V., 2002. Dynamic performance indices for 3-dof parallel manipulators. In: Proc. Advances in Robot Kinematics. pp. 11-20.
[Doty et al., 1993]
K. Doty, C.B.C. Melchiorri.
A theory of generalized inverse applied to robotics.
Int. J. Robot. Res, 12 (1993), pp. 1-19
[Gosselin, 1990a]
Gosselin, C., 1990a. Dexterity indices for planar and spatial robotic manipulators. In: IEEE International Conference on Robotics and Automation. pp. 650-655 vol.1.
[Gosselin and y., 1990b]
C.A.J. Gosselin.
Kinematic inversion of parallel manipulators in the presence of incompletely specified tasks.
ASME J. Mechanical Design, 112 (1990), pp. 494-500
[Gosselin and Angeles, 1991]
C. Gosselin, J. Angeles.
A global performance index for the kinematic optimization of robotic manipulators.
J. Mech. Des., 113 (1991), pp. 220-226
[Graettinger and Krogh, 1988]
T. Graettinger, B. Krogh.
The acceleration radius: a global performance measure for robotic manipulators, Journal of Dynamic Systems.
Measurement, and Control, 4 (1988), pp. 60-69
[Huang and Whitehouse, 1998]
T. Huang, D. Whitehouse.
Local dexterity, optimal architecture and optimal design of parallel machine tools.
Ann. CIRP, 47 (1998), pp. 347-351
[Huang et al., 2004]
Huang, T. Li, M.L. Z. C. D. y. W. D., 2004. Optimal kinematic design of 2-dof parallel manipulators with well-shaped workspace bounded by a specified conditioning index. IEEE Transactions on Robotics and Automation 20 (3), 538-543.
[Huo and Baron, 2011]
L. Huo, L. Baron.
The self-adaptation of weights for joint-limits and singularity avoidances of functionally redundant robotic-task. Robotics and Computer-Integrated Manufacturing, 27 (2011), pp. 367-376
[Khatib and Burdick, 1987]
O. Khatib, J. Burdick.
Optimization of dynamics in manipulator design: The operational space formulation. The International Journal of Robotics and Automation, 2 (1987), pp. 90-98
[Khatib, 1980]
Khatib, O., 1980. Commande dynamique dans l’espace operational des robots manipulateurs en presence d’obstacles. Ph.D. thesis, Ecole Nationale Superieure de lAeronautique et de L’Espace, Touluse, France.
[Kim and Ryu, 2003]
S. Kim, J. Ryu.
New dimensionally homogeneous jacobian matrix formulation by three end-effector points for optimal design of parallel manipulators.
IEEE Transactions on Robotics and Automation, 19 (2003), pp. 731-737
[Klein and Blaho, 1987]
C. Klein, B. Blaho.
Dexterity measures for the design and control of kinematically redundant manipulators.
International Journal of Robotics Research, 6 (1987), pp. 72-83
[Kumar and Waldron, 1985]
A. Kumar, K. Waldron.
The workspaces of a mechanical manipulator.
Trans. ASME, Journal of Mechanical Design, 4 (1985), pp. 3-9
[Li and Sastry, 1988]
Z. Li, S. Sastry.
Task-oriented optimal grasping by multifingered robot hands.
IEEE Journal of Robotics and Automation, 4 (1988), pp. 32-44
[Li et al., 2010]
J. Li, S.W.X.H.C. Wang.
Optimization of a novel mechanism for a minimally invasive surgery robot.
Int. J. Med. Robotics Comput. Assist. Surg., 6 (2010), pp. 8390
[Li and Huang, 2005]
M. Li, T.Z.D. Huang.
Conceptual design and dimensional synthesis of a reconfigurable hybrid robot.
ASME J Manufact Sci Eng, 127 (2005), pp. 647-653
[Liegeois, 1977]
A. Liegeois.
Automatic supervisory control of the configuration and behavior of multibody mechanisms.
IEEE Transactions on Systems, Man and Cybernetics, 7 (1977), pp. 868-871
[Lipkin and Du_y, 1989]
H. Lipkin, J. Du_y.
Hybrid twist and wrench control of a robotic manipulator.
ASME J. Mechanisms Transmissions Automation Des., 110 (1989), pp. 110-144
[Ma and Angeles, 1991a]
Ma, O. y Angeles, J., 1991a. The concept of dynamic isotropy and its applications to inverse kinematics and trajectory planning. In: Proceedings 1991 IEEE International Conference on Robotics and Automation.
[Ma and Angeles, 1991b]
Ma, O. y Angeles, J., 1991b. Optimum architecture design of platform manipulators. In: Fifth International Conference on Advanced Robotics, 1991 Robots in Unstructured Environments’. pp. 1130-1135 vol.2.
[Merlet, 2007]
Merlet, J., 2007. Jacobian, manipulability, condition number and accuracy of parallel robots. In: Robotics Research. Vol. 28. pp. 175-184.
[Merlet, 2006]
Merlet, J.P., 2006. Parallel Robots. Springer.
[Moreno and Pamanes, 2011]
Moreno, H.A. y Pamanes, J., 2011. Isotropic design of a 2 dof parallel kinematic machine with a translational workpiece table. In: 13th IFToMMWorld Congress in Mechanism and Machine Science.
[Moreno et al., 2006]
Moreno, H. Pamanes, J.W. P. y. C. D., 2006. Global optimization of performance of a 2prr parallel manipulator for cooperative tasks. In: ICINCORA’ 06. pp. 516-522.
[Moreno et al., 2010]
Moreno, H. Saltaren, R.P. J. y. A. R., 2010. Motion strategy for the climbing robot on a metallic orthogonal structure. In: Proceedings of the 13th International Conference on Climbing and Walking Robots. pp. 1161-1168.
[Pamanes and Zeghloul, 1991]
Pamanes, A. y Zeghloul, S., Apr. 1991. Optimal placement of robotic manipulators using multiple kinematic criteria. In: Robotics and Automation, 1991. Proceedings., 1991 IEEE International Conference on. pp. 933-938 vol.1.
[Park and Kim, 1998]
F. Park, J. Kim.
Manipulability of closed kinematic chains.
J. Mech. Des., 120 (1998), pp. 542-548
[Pámanes, 1992]
Pámanes, J., 1992. Contribution à l’étude de l’accessibilité aux tâches et à la détermination du placement optimal de robots manipulateurs. Ph.D. thesis, Université de Poitiers, Poitiers, France.
[Salisbury and Craig, 1982]
K. Salisbury, J. Craig.
Articulated hands: force and kinematic issues.
The Int. J. of Robotic Research, 1 (1982), pp. 4-17
[Saltaren et al., 2007]
R. Saltaren, J.M. Sabater, E. Yime, J.M. Azorin, R. Aracil, N. Garcia.
Performance evaluation of spherical parallel platforms for humanoid robots.
Robotica, 25 (2007), pp. 257-267
[Ueberle et al., 2004]
Ueberle, M., Mock, N., Buss, M., 2004. Vishard10, a novel hyper-redundant haptic interface. In: Proceedings of the 12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. pp. 58-65.
[Voglewede and Ebert-Upho_, 2004]
Voglewede, P. y Ebert-Upho_, I., 2004. Measuring closenessto singularities for parallel manipulators. In: Proc. IEEE International Conference on Robotics and Automation. pp. 4539-4544.
[Wen and Wilfinger, 1999]
J.T.-Y. Wen, L. Wilfinger.
Kinematic manipulability of general constrained rigid multibody systems.
IEEE Transactions on Robotics and Automation, 15 (1999), pp. 558-567
[Yoshikawa, 1985a]
Yoshikawa, T., 1985a. Dynamic manipulability of robot manipulators. In: Proceedings of the IEEE International Conference on Robotics and Automation. pp. 1033-1038.
[Yoshikawa, 1985b]
T. Yoshikawa.
Manipulability of robotic mechanisms.
The International Journal of Robotics Research, 4 (1985), pp. 3-9
[Yoshikawa, 1990]
T. Yoshikawa.
Foundations of Robotics: Analysis and Control.
The MIT Press, (1990),
[Zanganeh and Angeles, 1997]
K. Zanganeh, J. Angeles.
Kinematic isotropy and the optimum design of parallel manipulators.
Int. J. Robot. Res., 16 (1997), pp. 185-197
Descargar PDF
Opciones de artículo