Este trabajo propone una metodología para el reconocimiento de maniobras quirúrgicas en intervenciones de cirugía laparoscópica. El objetivo es la creación de un interfaz entre el cirujano y un asistente robótico quirúrgico de dos brazos para procesos de cirugía mínimamente invasiva. El interfaz propuesto recibe la información sobre el posicionado de las herramientas quirúrgicas del cirujano mediante sensores 3D y el sistema de reconocimiento facilita la maniobra actual que se ha realizado. Por lo tanto, el sistema de reconocimiento de maniobras sobre el que se apoya este interfaz necesita una librería de modelos de maniobras para trabajar. Los modelos elegidos para representar las maniobras quirúrgicas son los Modelos Ocultos de Markov. Para validar la metodología propuesta, se han desarrollado una serie de experimentos in-vitro.
Información de la revista
Vol. 8. Núm. 2.
Páginas 24-34 (abril 2011)
Vol. 8. Núm. 2.
Páginas 24-34 (abril 2011)
Open Access
Interfaz multimodal para un asistente robótico quirúrgico: uso de reconocimiento de maniobras quirúrgicas
Visitas
3663
Belén Estebanez, Pablo del Saz-Orozco, Isabel García-Morales, Víctor F. Muñoz
Departamento de Ingeniería de Sistemas y Automática, Grupo de Robótica Médica, Universidad de Málaga, C/ Severo Ochoa, n° 4
Este artículo ha recibido
Información del artículo
Resumen
Palabras clave:
maniobras quirúrgicas
reconocimiento de patrones
interfaz hombre-máquina
asistente robótico quirúrgico
El Texto completo está disponible en PDF
Referencias
[Baum, 1970]
L.E. Baum, et al.
A maximization technique occurring in the statistical analysis of probabilistic functions of markov chains.
The Annals of Mathematical Statistics, 41 (1970), pp. 164-171
[Bauzano, 2009]
Bauzano E y otros (2009). Three-Layer Control for Active Wrists in Robotized Laparoscopic Surgery. IEEE/RSJ International Conference on Intelligent Robots and Systems, Missouri, EEUU.
[Brell et al., 2007]
M. Brell, et al.
Positioning tasks in multimodal computernavigated surgery.
IEEE Multimedia, (2007), pp. 42-51
[Butner et al., 2003]
S. Butner, et al.
Transforming a Surgical Robot for Human Telesurgery.
IEEE Transactions on Robotics and Automation, 19 (2003), pp. 818-824
[Casals, 1995]
A. Casals, et al.
Vision Guided Robotic System for Laparoscopic Surgery.
IFAC International Congress on Advanced Robotics, pp. 33-36
[Fernández, 2002]
Fernández J.J., “Robots para movimiento de la cámara en cirugía laparoscópica”, ETSII, Universidad de Málaga, 2002.
[Finlay and Ornstein, 1995]
P.A. Finlay, M.H. Ornstein.
Controlling the Movement of a Surgical Laparoscope.
IEEE Engineering in Medicine and Biology, (1995), pp. 289-291
[Gan et al., inpress]
Gan Q., et al., “Comparison of two measurement fusion methods for Kalman filter based multisensory data fusion”, IEEE Transactions on Aerospace and Electronic Systems, 37(1), pp. 273–280.
[Gomez et al., 2009]
J.B. Gomez, et al.
Mouth gesture and voice command based robot command interface.
IEEE International Conference on Robotics and Automation, (2009), pp. 333-338
[Güven et al., 2010]
Y. Güven, et al.
Medical user interface for orthopedical surgical robotic system.
15th National Biomedical Engineering Meeting, (2010), pp. 16-22
[Kalman, 1960]
R.E. Kalman.
A New Approach to Linear Filtering and Prediction Problems.
Transactions of the ASME-Journal of Basic Engineering, 82 (1960), pp. 35-45
[Ko Seong-Young and Kwon Dong-Soo, 2004]
Seong-Young Ko, Dong-Soo Kwon.
A Surgical Knowledge Based Interaction Method for a Laparoscopic Assistant Robot.
Proceedings of the 2004 IEEE International Workshop on Robot and Human, pp. 313-318
[Ko Seong-Young et al., 2005]
Seong-Young Ko, et al.
Intelligent Interaction between Surgeon and Laparoscopic Assistant Robot System.
IEEE International Workshop on Robots and Human Interactive, (2005), pp. 60-65
[Megali et al., 2006]
G. Megali, et al.
Modelling and Evaluation of Surgical Performance Using Hidden Markov Models.
IEEE Transactions on Biomedical Engineering, 53 (2006), pp. 60-65
[Miklós and Meyer, 2005]
Miklós, I.M. Meyer.
A linear memory algorithm for Baum-Welch training.
BMC Bioinformatics, 6 (2005),
[Muñoz et al., 2000]
V.F. Muñoz, et al.
A Medical Robotics Assistant for Minimally Invasive Surgery.
IEEE International Conference on Robotics and Automation ICRA, 3 (2000), pp. 2901-2906
[Muñoz et al., 2001]
V.F. Muñoz, et al.
A new robotic endoscope manipulator.
Surgical Endoscopy Ultrasonic and Interventional Techniques, Springer-Verlag, pp. 924-927
[Murphy, inpress]
Murphy K., “Hidden Markov Model (HMM)”, Toolbox for Matlab [Online]. Disponible: http://www.ai.mit.edu/∼murphyk/Software/HMM/hmm.html.
[Nishikawa et al., 2003]
A. Nishikawa, et al.
FAce MOUSe: A Novel Human–Machine Interface for Controlling the Position of a Laparoscope.
IEEE Transactions On Robotics And Automation, 19 (2003), pp. 825-841
[Noonan et al., 2008]
D.P. Noonan, et al.
Gaze contingent articulated robot control for robot assisted minimally invasive surgery.
International Conference on Intelligent Robots and Systems, (2008), pp. 1186-1191
[Novák et al., 2004]
D. Novák, et al.
Speech Recognition Methods Applied to Biomedical Signals Processing.
Proceedings of the 26th Annual International Conference of the IEEE EMBS, pp. 118-121
[Rabiner, 1989]
L.R. Rabiner.
A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition.
Proceedings of the IEEE, 77 (1989), pp. 257-286
[Rabiner, 1986]
L.R. Rabiner.
An Introduction to Hidden Markov Models.
IEEE ASSP MAGAZINE, (1986), pp. 4-16
[Rosen et al., 2001]
Rosen J., et al., “Objective Laparoscopic Skills Assessments of Surgical Residents Using Hidden Markov Models Based on Haptic Information and Tool/Tissue Interactions”, Studies in Health Technology and Informatics - Medicine Meets Virtual Reality, Newport Beach, CA, Enero 2001.
[Rosen et al., 2001]
J. Rosen, et al.
Markov Modeling of Minimally Invasive Surgery Based on Tool/Tissue Interaction and Force/Torque Signatures for Evaluating Surgical Skills.
IEEE Transactions on Biomedical Engineering, 48 (2001), pp. 579-591
[Rosen et al., 2002]
J. Rosen, et al.
The BlueDRAGON - A System for Measuring the Kinematics and the Dynamics of Minimally Invasive Surgical Tools In-Vivo.
Proceedings of the 2002 IEEE Intemational Conference on Robotics & Automation, pp. 1876-1881
[Rosen et al., 2006]
J. Rosen, et al.
Generalized Approach for Modeling Minimally Invasive Surgery as a Stochastic Process Using a Discrete Markov Model’.
IEEE Transactions on Biomedical Engineering, 53 (2006), pp. 399-413
[Sackier et al., 1997]
J. Sackier, et al.
Voice Activation of a Surgical Robotic Assistant.
The American Journal of Surgery, 174 (1997), pp. 406-409
[Satava, 1993]
R. Satava.
Virtual reality surgical simulator.
Surgical Endoscopy, 7 (1993), pp. 203-205
[Tsekos, 2009]
N.V. Tsekos.
MRO-guided robotics at the U of Houston: Evolving Methodologies for interventions and surgeries.
Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (2009), pp. 5637-5640
[Viterbi, 2006]
A.J. Viterbi.
A personal history of the Viterbi algorithm.
IEEE Signal Processing Magazine, 23 (2006), pp. 120-142
[Wang et al., inpress]
Wang et al., Wang Y., et al., “Automated endoscope system for optimal positioning”, Patente de invención número US5815640, Estados Unidos.
[Zhang et al., 2002]
S.H. Zhang, et al.
The human machine interface implementation for the robot assietd endoscopic surgery system.
IEEE International Workshop on Robot and Human Interactive Communication, (2002), pp. 442-447
Copyright © 2011. Elsevier España, S.L.. All rights reserved