Este artículo presenta una revisión del estado de la técnica del modelado y control de helicópteros autónomos que incluye algunas de las plataformas de helicópteros autónomos más utilizadas así como arquitecturas de control existentes, y aspectos relacionados con la estimación del estado y la detección de fallos. Se aborda también la elección e identificación de modelos para los helicópteros autónomos. A continuación se trata con cierto detalle el sistema de control, presentando diferentes métodos e introduciendo también la planificación de trayectorias y la realización de maniobras agresivas.
Información de la revista
Vol. 5. Núm. 4.
Páginas 5-16 (octubre 2008)
Vol. 5. Núm. 4.
Páginas 5-16 (octubre 2008)
Open Access
Modelado y control de helicópteros autónomos. Revisión del estado de la técnica
Visitas
4726
* Universidad Pablo de Olavide Área de Ingeniería de Sistemas y Automática Ctra. Utrera Km1, 41013 Sevilla, España
** Universidad de Sevilla Departamento de Ingeniería de Sistemas y Automática Camino de los Descubrimientos s/n, 41092, Sevilla, España
*** Centro Avanzado de Tecnologías Aeroespaciales Aerópolis, Parque Tecnológico Aeroespacial de Andalucía N-IV, Km. 529, Calle Wilbur y Orville Wright, 17 41309, La Rinconada - Sevilla, España
Este artículo ha recibido
Información del artículo
Resumen
Palabras Clave:
helicópteros autónomos
control de helicópteros autónomos
modelado e identificación de helicópteros
arquitecturas de control
robótica aérea
El Texto completo está disponible en PDF
Referencias
[Andrievsky et al., 2005]
B. Andrievsky, A. Fradkov, D. Peaucelle.
Adaptive control experiments for laas “helicopter”benchmark.
2005 International Conference on Physics and Control, PhysCon 2005, pp. 760-765
[Avila et al., 2003]
J.C. Avila, B. Brogliato, A. Dzul, R. Lozano.
Nonlinear modelling and control of helicopters.
Automatica, 39 (2003), pp. 1583-1596
[Bagnell and Schneider, 2001]
J.A. Bagnell, J.G. Schneider.
Autonomous helicopter control using reinforcement learning policy search methods.
2001IEEE International Conference on Robotics and Automation (ICRA), pp. 1615-1620
[Barrientos et al., 2002]
A. Barrientos, J. Del Cerro, P. Campoy, P.J. García.
An autonomous helicopter guided by computer vision for inspection of overhead power cables.
Workshop on Aerial Robotics - IEEE / RSJ International Conference on Intelliget Robots and Systems IROS 2002,
[Bejar et al., 2005]
M. Bejar, A. Isidori, L. Marconi, R. Naldi.
Robust vertical/lateral/longitudinal control of an helicopter with constant yaw-attitude.
44th IEEE Conference on Decision and Control, and the European Control Conference, CDCECC’05, pp. 6192-6197
[Bejar and Raimundez, 2007]
M. Bejar, J.C. Raimundez.
Application of adaptive control to 2dof helicopter model.
RIAI - Revista Iberoamericana de Automatica e Informatica Industrial, 4 (2007), pp. 35-40
[Bhandari et al., 2007]
S. Bhandari, A. Samuel, R. Colgren.
12-dof dynamics model of a uav helicopter using analytical and parameter identification techniques.
American Helicopter Society International 63rd Annual Forum - Riding the Wave of New Vertical Flight Technology, pp. 495-506
[Bhandari and Colgren, 2006]
S. Bhandari, R. Colgren.
6-dof dynamic model for a raptor 50 uav helicopter including stabilizer bar dynamics.
AIAA Modeling and Simulation Technologies Conference, 2006, pp. 1138-1154
[Bhandari et al., 2005]
S. Bhandari, R. Colgren, P. Lederbogen, S. Kowalchuk.
Six-dof dynamic modeling and flight testing of a uav helicopter.
AIAA Modeling and Simulation Technologies Conference 2005, pp. 992-1008
[Bortoff, 1999]
Scott A. Bortoff.
The university of toronto rc helicopter: A test bed for nonlinear control.
Proceedings of the 1999 IEEE International Conference on Control Applications (CCA) and IEEE International Symposium on Computer Aided Control System Design (CACSD), pp. 333-338
[Calise et al., 1994]
A.J. Calise, B.S. Kim, J. Leitner, J.V.R. Prasad.
Helicopter adaptive flight control using neural networks.
Proceedings of the 33rd IEEE Conference on Decision and Control. Part 1 (of 4), pp. 3336-3341
[Cao, 2000]
Y. Cao.
New inverse solution technique for studying helicopter maneuvering flight.
Journal of the American Helicopter Society, 45 (2000), pp. 43-53
[Castillo et al., 2007]
P. Castillo, P. Garcia, R. Lozano, P. Albertos.
Modelling and stabilization of a mini helicopter having four rotors.
RIAI - Revista Iberoamericana de Automatica e Informatica Industrial, 4 (2007), pp. 41-57
[Celi, 2000]
R. Celi.
Optimization-based inverse simulation of a helicopter slalom maneuver.
Journal of Guidance, Control, and Dynamics, 23 (2000), pp. 289-297
[Cheng et al., 2006]
R.P. Cheng, M.B. Tischler, G.J. Schulein.
R-max helicopter state-space model identification for hover and forward-flight.
Journal of the American Helicopter Society, 51 (2006), pp. 202-210
[Cheviron et al., 2007]
T. Cheviron, T. Hamel, R. Mahony, G. Baldwin.
Robust nonlinear fusion of inertial and visual data for position, velocity and attitude estimation of uav.
2007 IEEE International Conference on Robotics and Automation, ICRA’07, pp. 2010-2016
[Civita et al., 2003a]
M.La Civita, G. Papageorgiou, W.C. Messner, T. Kanache.
Integrated modeling and robust control for fullenvelope flight of robotic helicopters.
2003 IEEE International Conference on Robotics and Automation, pp. 552-557
[Civita et al., 2003b]
M.La Civita, G. Papageorgiou, W.C. Messner, T. Kanade.
Design and flight testing of a gain-scheduled h infinite loop shaping controller for wide-envelope flight of a robotic helicopter.
2003 American Control Conference, pp. 4195-4200
[Civita et al., 2006]
M.La Civita, G. Papageorgiou, W.C. Messner, T. Kanade.
Design and flight testing of an h infinite controller for a robotic helicopter.
Journal of Guidance, Control, and Dynamics, 29 (2006), pp. 485-494
[Corban et al., 1998]
J.E. Corban, A.J. Calise, J.V.R. Prasad.
Implementation of adaptive nonlinear control for flight test on an unmanned helicopter.
Proceedings of the IEEE Conference on Decision and Control, pp. 3641-3646
[Deeg, 2005]
Deeg, C. (2005). Modeling, simulation and implementation of an autonomous flying robot.
[Doherty et al., 2000]
P. Doherty, G. Granlund, K. Kuchcinski, E. Sandewall, K. Nordberg, E. Skarman, J. Wiklund.
The witas unmanned aerial vehicle project.
Proceedings of the 14th European Conference on Artificial Intelligence, (2000), pp. 747-755
[Downs et al., 2007]
J. Downs, R. Prentice, S. Dalzell, A. Besachio, C.M. Ivler, M.B. Tischler, M.H. Mansur.
Control system development and flight test experience with the mq-8b fire scout vertical take-off unmanned aerial vehicle (vtuav).
American Helicopter Society International 63rd Annual Forum - Riding the Wave of New Vertical Flight Technology, pp. 566-592
[Doyle and Harris, 1996]
R.S. Doyle, C.J. Harris.
Multi-sensor data fusion for helicopter guidance using neuro-fuzzy estimation algorithms.
Aeronautical Journal, 100 (1996), pp. 241-251
[Dutka et al., 2003]
A.S. Dutka, A.W. Ordys, M.J. Grimble.
Non-linear predictive control of 2 dof helicopter model.
42nd IEEE Conference on Decision and Control, (2003), pp. 3954-3959
[Eck et al., 2001]
C. Eck, J. Chapuis, H.P. Geering.
Software-supported design and evaluation of low-cost navigation units.
Proceedings of the 8th Saint Peterburg International Conference on Integrated Navigation Systems, pp. 163-172
[Enns and Si, 2000]
R. Enns, J. Si.
Helicopter flight control design using a learning control approach.
39th IEEE Confernce on Decision and Control., Vol. 2 (2000), pp. 1754-1759
[Enns and Si, 2001]
R. Enns, J. Si.
Helicopter tracking control using direct neural dynamic programming.
International Joint Conference on Neural Networks (IJCNN’01), (2001), pp. 1019-1024
[Frazzoli et al., 1999]
E. Frazzoli, M.A. Dahleh, E. Feron.
Hybrid control architecture for aggressive maneuvering of autonomous helicopters.
The 38th IEEE Conference on Decision and Control (CDC), pp. 2471-2476
[Frazzoli et al., 2000]
E. Frazzoli, M.A. Dahleh, E. Feron.
Trajectory tracking control design for autonomous helicopters using a backstepping algorithm.
2000 Americal Control Conference, pp. 4102-4107
[Frazzoli et al., 2005]
E. Frazzoli, M.A. Dahleh, E. Feron.
Maneuver-based motion planning for nonlinear systems with symmetries.
IEEE Transactions on Robotics, 21 (2005), pp. 1077-1091
[Fujiwara et al., 2004]
D. Fujiwara, J. Shin, K. Hazawa, K. Nonami.
H infinite hovering and guidance control for autonomous smallscale unmanned helicopter.
Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 70 (2004), pp. 1708-1714
[Gaonkar, 2008]
G.H. Gaonkar.
Review of turbulence modeling and related applications to some problems of helicopter flight dynamics.
Journal of the American Helicopter Society, 53 (2008), pp. 87-107
[Gavrilets et al., 2004]
V. Gavrilets, B. Mettler, E. Feron.
Human-inspired control logic for automated maneuvering of miniature helicopter.
Journal of Guidance, Control, and Dynamics, 27 (2004), pp. 752-759
[Gavrilets et al., 2001]
V. Gavrilets, E. Frazzoli, B. Mettler, M. Piedmonte, E. Feron.
Aggressive maneuvering of small autonomous helicopters: A human-centered approach.
International Journal of Robotics Research, 20 (2001), pp. 795-807
[Gonzalez et al., 2004]
A. Gonzalez, R. Mahtani, M. Bejar, A. Ollero.
Control and stability analysis of an autonomous helicopter.
Robotics: Trends, Principles, and Applications - International Symposium on Robotics and Applications, ISORA - Sixth Biannual World Automation Congress, WAC 2004, pp. 399-404
[Guo et al., 2002]
L. Guo, C. Melhuish, Q. Zhu.
Towards neural adaptive hovering control of helicopters.
Proceedings of the 2002 IEEE International Conference on Control Applications, Vol. 1 (2002), pp. 54-58
[Hazawa et al., 2004a]
K. Hazawa, J. Shin, D. Fujiwara, K. Igarashi, D. Fernando, K. Nonami.
Autonomous flight control of hobby-class small unmanned helicopter (modeling based on experimental identification and autonomous flight control experiments).
Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 70 (2004), pp. 720-727
[Hazawa et al., 2004b]
K. Hazawa, J. Shin, D. Fujiwara, K. Igarashi, D. Fernando, K. Nonami.
Autonomous flight control of hobby-class small unmanned helicopter (modeling based on experimental identification and autonomous flight control experiments).
Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 70 (2004), pp. 720-727
[Heredia et al., 2008]
G. Heredia, A. Ollero, M. Bejar, R. Mahtani.
Sensor and actuator fault detection in small autonomous helicopters.
Mechatronics, 18 (2008), pp. 90-99
[Heredia et al., 2005]
G. Heredia, A. Ollero, R. Mahtani, M. Bejar, V. Remuss, M. Musial.
Detection of sensor faults in autonomous helicopters.
2005 IEEE International Conference on Robotics and Automation, pp. 2229-2234
[Isidori et al., 2003]
A. Isidori, L. Marconi, A. Serrani.
Robust nonlinear motion control of a helicopter.
IEEE Transactions on Automatic Control, 48 (2003), pp. 413-426
[Johnson and Calise., 2001]
E.N. Johnson, A.J. Calise.
Neural network adaptive control of systems with input saturation.
2001 American Control Conference, Vol. 5 (2001), pp. 3527-3532
[Johnson and Kannan, 2005a]
E.N. Johnson, S.K. Kannan.
Adaptive trajectory control for autonomous helicopters.
Journal of Guidance, Control, and Dynamics, 28 (2005), pp. 524-538
[Johnson and Kannan, 2005b]
E.N. Johnson, S.K. Kannan.
Adaptive trajectory control for autonomous helicopters.
Journal of Guidance, Control, and Dynamics, 28 (2005), pp. 524-538
[Jun et al., 1999]
Myungsoo Jun, Stergios I. Roumeliotis, Gaurav S. Sukhatme.
State estimation of an autonomous helicopter using kalman filtering.
1999 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’99): Human and Environment Friendly Robots whith High Intelligence and Emotional Quotients’, pp. 1346-1353
[Kadmiry and Driankov, 2004a]
B. Kadmiry, D. Driankov.
A fuzzy flight controller combining linguistic and model-based fuzzy control.
Fuzzy Sets and Systems, 146 (2004), pp. 313-347
[Kadmiry and Driankov, 2004b]
B. Kadmiry, D. Driankov.
A fuzzy gain-scheduler for the attitude control of an unmanned helicopter.
IEEE Transactions on Fuzzy Systems, 12 (2004), pp. 502-515
[Kadmiry et al., 2001]
B. Kadmiry, P. Bergsten, D. Driankov.
Autonomous helicopter control using fuzzy gain scheduling.
2001 IEEE International Conference on Robotics and Automation, Vol. 3 (2001), pp. 2980-2985
[Kagawa et al., 2005]
M. Kagawa, H. Katayama, A. Ichikawa.
Attitude control of a helicopter model by feedback linearization.
SICE Annual Conference 2005, (2005), pp. 1870-1875
[Kallapur et al., 2007]
A.G. Kallapur, S.S. Ali, S.G. Anavatti.
Application of extended Kalman filter towards UAV identification, 76 (2007),
[Kaloust et al., 1997]
J. Kaloust, C. Ham, Z. Qu.
Nonlinear autopilot control design for a 2-dof helicopter model.
IEE Proceedings: Control Theory and Applications, 144 (1997), pp. 612-616
[Kim and Calise, 1997]
B.S. Kim, A.J. Calise.
Nonlinear flight control using neural networks.
Journal of Guidance, Control, and Dynamics, 20 (1997), pp. 26-33
[Kim et al., 2006]
B. Kim, Y. Chang, M.H. Lee.
System identification and 6-dof hovering controller design of unmanned model helicopter.
JSME International Journal, Series C: Mechanical Systems, Machine Elements and Manufacturing, 49 (2006), pp. 1048-1057
[Kim et al., 2004]
B. Kim, Y. Chang, J. Keh, H. Ha, M. Lee.
Design of 6-dof attitude controller of hovering model helicopter.
IECON 2004 - 30th Annual Conference of IEEE Industrial Electronics Society, Vol. 1 (2004), pp. 104-110
[Kim and Tilbury, 2004]
S.K. Kim, D.M. Tilbury.
Mathematical modeling and experimental identification of an unmanned helicopter robot with flybar dynamics.
Journal of Robotic Systems, 21 (2004), pp. 95-116
[Kondak et al., 2006]
K. Kondak, M. Bernard, N. Losse, G. Hommel.
Elaborated modeling and control for autonomous small size helicopters.
VDI Berichte, (2006), pp. 207-216
[Krupadanam et al., 2002a]
A.S. Krupadanam, A.M. Annaswamy, R.S. Mangoubi.
Multivariable adaptive control design with applications to autonomous helicopters.
Journal of Guidance, Control, and Dynamics, 25 (2002), pp. 843-851
[Krupadanam et al., 2002b]
A.S. Krupadanam, A.M. Annaswamy, R.S. Mangoubi.
Multivariable adaptive control design with applications to autonomous helicopters.
Journal of Guidance, Control, and Dynamics, 25 (2002), pp. 843-851
[Krupadanam et al., 2002c]
A.S. Krupadanam, A.M. Annaswamy, R.S. Mangoubi.
A multivariable adaptive controller for autonomous helicopters.
2002 American Control Conference, pp. 2052-2057
[Kutay et al., 2005]
A.T. Kutay, A.J. Calise, M. Idan, N. Hovakimyan.
Experimental results on adaptive output feedback control using a laboratory model helicopter.
IEEE Transactions on Control Systems Technology, 13 (2005), pp. 196-202
[Leitner et al., 1997]
J. Leitner, A. Calise, J.V.R. Prasad.
Analysis of adaptive neural networks for helicopter flight control.
Journal of Guidance, Control, and Dynamics, 20 (1997), pp. 972-979
[Leitner et al., 1998]
Leitner Jesse, Calise Anthony, J.V.R. Prasad.
Full authority helicopter adaptive neuro-controller.
Proceedings of the 1998 IEEE Aerospace Conference. Part 1 (of 5.), pp. 117-126
[Liceaga-Castro et al., 1989]
E. Liceaga-Castro, R. Bradley, R. Castro-Linares.
Helicopter control design using feedback linearization techniques.
Proceedings of the 28th IEEE Conference on Decision and Control. Part 1 (of 3), pp. 533-534
[Lope et al., 2007]
Lope, J. De, J. J. S. Martin and J. A. Martin H (2007). Helicopter flight dynamics using soft computing models. Vol. 4739 LNCS of 11th International Conference on Computer Aided Systems Theory, EUROCAST 2007. las palmas de gran canaria ed.
[Mahony and Hamel, 2004]
R. Mahony, T. Hamel.
Robust trajectory tracking for a scale model autonomous helicopter.
International Journal of Robust and Nonlinear Control, 14 (2004), pp. 1035-1059
[Marconi et al., 2002]
L. Marconi, A. Isidori, A. Serrani.
Autonomous vertical landing on an oscillating platform: An internalmodel based approach.
Automatica, 38 (2002), pp. 21-32
[Marconi and Naldi, 2007]
L. Marconi, R. Naldi.
Robust full degree-of- freedom tracking control of a helicopter.
Automatica, 43 (2007), pp. 1909-1920
[Martin et al., 2007]
R.San Martin, A. Barrientes, P. Gutierrez, J. Del Cerro.
Neural networks training architecture for uav modelling.
2006 World Automation Congress, WAC’06,
[Martin et al., 2006]
R.San Martin, A. Barrientos, P. Gutierrez, J. Del Cerro.
Unmanned aerial vehicle (uav) modelling based on supervised neural networks.
2006 IEEE International Conference on Robotics and Automation, ICRA 2006, pp. 2497-2502
[Maza and Ollero, 2004]
I. Maza, A. Ollero.
Multiple uav cooperative searching operation using polygon area decomposition and efficient coverage algorithms.
Proceedings of the 7th International Symposium on Distributed Autonomous Robotic Systems, pp. 211-220
[Mazenc et al., 2003]
F. Mazenc, R.E. Mahony, R. Lozano.
Forwarding control of scale model autonomous helicopter: A lyapunov control design.
42nd IEEE Conference on Decision and Control, pp. 3960-3965
[Mettler et al., 2002]
B. Mettler, M.B. Tischler, T. Kanade.
System identification modeling of a small-scale unmanned rotorcraft for flight control design.
Journal of the American Helicopter Society, 47 (2002), pp. 50-63
[Mettler et al., 1999]
B. Mettler, M.B. Tischler, Kanade Takeo.
System identification of small-size unmanned helicopter dynamics.
Annual Forum Proceedings - American Helicopter Society, 2 (1999), pp. 1706-1717
[Montgomery Bekey, 1998]
James F. Montgomery, George A. Bekey.
Learning helicopter control through ‘teaching by showing’.
Proceedings of the IEEE Conference on Decision and Control, (1998), pp. 3647-3652
[Morris et al., 1994a]
John C. Morris, Michiel van Nieuwstadt, Pascale Bendotti.
Identification and control of a model helicopter in hover.
Proceedings of the 1994 American Control Conference. Part 1 (of 3), pp. 1238-1242
[Morris et al., 1994b]
John C. Morris, Michiel van Nieuwstadt, Pascale Bendotti.
Identification and control of a model helicopter in hover.
Proceedings of the 1994 American Control Conference. Part 1 (of 3), pp. 1238-1242
[Munoz et al., 1994]
V. Munoz, A. Ollero, M. Prado, A. Simon.
Mobile robot trajectory planning with dynamic and kinematic constraints.
Proceedings of the 1994 IEEE International Conference on Robotics and Automation, pp. 2802-2807
[Nakanishi and Inoue, 2002]
H. Nakanishi, K. Inoue.
Development of autonomous flight control systems for unmanned helicopter by use of neural networks.
2002 International Joint Conference on Neural Networks (IJCNN’02), pp. 2626-2631
[Nakanishi and Inoue, 2003]
H. Nakanishi, K. Inoue.
Development of autonomous flight control system for unmanned helicopter by use of neural networks.
International Joint Conference on Neural Networks 2003, pp. 2400-2405
[Ollero and Maza, 2007]
A. Ollero, I. Maza.
Springer, (2007),
[Ollero and Merino, 2004]
A. Ollero, L. Merino.
Control and perception techniques for aerial robotics.
Annual Reviews in Control, 28 (2004), pp. 167-178
[Peng et al., 2007]
K. Peng, G. Cai, B.M. Chen, M. Dong, T.H. Lee.
Comprehensive modeling and control of the yaw dynamics of a uav helicopter.
In: 25th Chinese Control Conference, CCC 2006, pp. 2087-2092
[Phillips et al., 1996]
C. Phillips, C.L. Karr, G. Walker.
Helicopter flight control with fuzzy logic and genetic algorithms.
Engineering Applications of Artificial Intelligence, 9 (1996), pp. 175-184
[Pieper, 1995]
J.K. Pieper.
Application of slmc: Trc control of a helicopter in hover.
Proceedings of the 1995 American Control Conference. Part 1 (of 6), pp. 1191-1195
[Prasad et al., 1999]
J.V.R. Prasad, A.J. Calise, Y. Pei, J.E. Corban.
Adaptive nonlinear controller synthesis and flight test evaluation: On an unmanned helicopter.
Proceedings of the 1999 IEEE International Conference on Control Applications (CCA) and IEEE International Symposium on Computer Aided Control System Design (CACSD), pp. 137-142
[Prouty and Curtiss, 2003]
R.W. Prouty, H.C. Curtiss Jr..
Helicopter control systems: A history.
Journal of Guidance, Control, and Dynamics, 26 (2003), pp. 12-18
[Puntunan and Parnichkun, 2006]
S. Puntunan, M. Parnichkun.
Online self-tuning precompensation for a pid heading control of a flying robot.
International Journal of Advanced Robotic Systems, 3 (2006), pp. 323-330
[Sanchez et al., 2005]
E.N. Sanchez, H.M. Becerra, C.M. Velez.
Combining fuzzy and pid control for an unmanned helicopter.
NAFIPS 2005–2005 Annual Meeting of the North American Fuzzy Information Processing Society, pp. 235-240
[Sanchez et al., 2007]
E.N. Sanchez, H.M. Becerra, C.M. Velez.
Combining fuzzy, pid and regulation control for an autonomous mini-helicopter.
Information Sciences, 177 (2007), pp. 1999-2022
[Shim et al., 1998a]
H. Shim, T.J. Koo, F. Hoffmann, S. Sastry.
Comprehensive study of control design for an autonomous helicopter.
Proceedings of the IEEE Conference on Decision and Control, pp. 3653-3658
[Shim et al., 1998b]
H. Shim, T.J. Koo, F. Hoffmann, S. Sastry.
Comprehensive study of control design for an autonomous helicopter.
Proceedings of the IEEE Conference on Decision and Control, pp. 3653-3658
[Shin et al., 2004]
J. Shin, D. Fujiwama, K. Hazawa, K. Nonami.
Model based optimal attitude and positioning control of smallscale unmanned helicopter.
Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 70 (2004), pp. 2631-2637
[Shin et al., 2002]
J. Shin, D. Fujiwara, K. Hazawa, K. Nonami.
Attitude control and hovering control of radio-controlled helicopter.
Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 68 (2002), pp. 3284-3291
[Sira-Ramirez et al., 2000]
H. Sira-Ramirez, R. Castro-Linares, E. Liceaga-Castro.
Liouvillian systems approach for the trajectory planning-based control of helicopter models.
International Journal of Robust and Nonlinear Control, 10 (2000), pp. 301-320
[Sugeno et al., 1995a]
M. Sugeno, Howard Winston, Isao Hirano, Satoru Kotsu.
Intelligent control of an unmanned helicopter based on fuzzy logic.
Proceedings of the 1995 51st Annual Forum. Part 1 (of 3), pp. 791-803
[Sugeno et al., 1995b]
M. Sugeno, I. Hirano, S. Nakamura, S. Kotsu.
Development of an intelligent unmanned helicopter.
Proceedings of the 1995 IEEE International Conference on Fuzzy Systems. Part 1. (of 5), pp. 33-34
[Sutarto et al., 2006]
H.Y. Sutarto, A. Budiyono, E. Joelianto, G.T. Hiong.
Switched linear control of a model helicopter.
9th International Conference on Control, Automation, Robotics and Vision, 2006, ICARCV’06,
[Wade et al., 1996]
Robert L. Wade, Gregory W. Walker.
Flight test results of the fuzzy logic adaptive controller-helicopter (flach).
Navigation and Control Technologies for Unmanned Systems, 2738 (1996), pp. 200-208
[Wan and Bogdanov, 2001]
E.A. Wan, A.A. Bogdanov.
Model predictive neural control with applications to a 6 dof helicopter model.
2001 American Control Conference, pp. 488-493
[Witt et al., 2008]
J. Witt, S. Boonto, H. Werner.
Approximate model predictive control of a 3-dof helicopter.
46th IEEE Conference on Decision and Control 2007, CDC, (2008), pp. 4501-4506
[Yang and Liu, 2003]
C.D. Yang, W.H. Liu.
Nonlinear h infinite decoupling hover control of helicopter with parameter uncertainties.
2003 American Control Conference, pp. 3454-3459
[Yang et al., 2002]
C.D. Yang, W.H. Liu, C.C. Kung.
Nonlinear h infinite decoupling control for hovering helicopter.
2002 American Control Conference, pp. 4353-4358
[Yang et al., 1995]
Chao Yang, Shoufeng Song.
Analysis about current situation and development of helicopter dynamics.
Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 21 (1995), pp. 46-52
[Zeng et al., 2006]
L.L. Zeng, D.B. Wang, C.G. Guo, X.H. Huang.
Survey of flight control technology for unmanned helicopter.
Kongzhi yu Juece/Control and Decision, 21 (2006), pp. 361-366
Copyright © 2008. Elsevier España, S.L.. Todos los derechos reservados