covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Modelización, Análisis y Control de Sistemas de Cojinetes Magnéticos Activos
Información de la revista
Vol. 5. Núm. 4.
Páginas 17-27 (octubre 2008)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 5. Núm. 4.
Páginas 17-27 (octubre 2008)
Open Access
Modelización, Análisis y Control de Sistemas de Cojinetes Magnéticos Activos
Visitas
3594
I. Arredondo
, J. Jugo
, S. Alonso-Quesada
, I. Lizarraga
, V. Etxebarria
* Dpto. de Electricidad y Electrónica. UPV/EHU
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas
Resumen

En este estudio se presentan el modelado, diseño de control, análisis de robustez y procedimiento de reducción activa de vibraciones de un sistema consistente en un eje sustentado mediante levitación magnética activa. Primero se describen la obtención del modelo y las características fundamentales del sistema. Empleando dicho modelo y aprovechando propiedades de simetría, se diseña un control de sustentación. Este se ajusta experimentalmente mediante un estudio de robustez, según el estándar ISO 14839-3. Por último, se realiza una reducción de las vibraciones que se producen en rotación, utilizando control adaptativo. El controlador final diseñado ha sido implementado experimentalmente con éxito.

Palabras Clave:
Cojinetes magnéticos
Modelado
Robustez
Control Activo
Máquina Herramienta
El Texto completo está disponible en PDF
Referencias
[Ahn and Han, 2003]
H.J. Ahn, D.C. Han.
System modeling of an AMB spindle: Part I modeling and validation for robust control.
KSME International Journal, 17 (2003), pp. 1844-1854
[Arredondo and Jugo, 2007]
I. Arredondo, J. Jugo.
Diseño e implementación de un FLL para su uso en control activo de máquinas de precisión con elementos rotantes.
XXVIII Jornadas de Automática,
[Arredondo et al., 2006]
I. Arredondo, J. Jugo, V. Etxebarria.
Modelling of a flexible rotor MagLev system.
Proceedings of 2006 American Control Conference,
[Astrom and Wittenmark, 1989]
K.L. Astrom, B. Wittenmark.
Adaptive Control.
Addison-Wesley, (1989),
[Chen and Knospe, 2007]
M. Chen, C.R. Knospe.
Control approaches to the suppression of machining chatter using active magnetic bearings.
IEEE Trans on Control Systems Technology, 15 (2007), pp. 220-232
[Childs, 1993]
D. Childs.
Turbomachinery Rotordynamics: Phenomena, Modeling & Analysis.
Jon Wiley & Sons Inc., (1993),
[Goodwin and Sin, 1984]
G.C. Goodwin, K.S. Sin.
Adaptive Filtering, Prediction and Control.
Prentice-Hall, Inc. Englewood Cliffs, (1984),
[Hu et al., 2004]
T. Hu, Z. Lin, P.E. Allaire.
Reducing power loss in magnetic bearings by optimizing current allocation.
IEEE Trans on Magnetics, 40 (2004), pp. 1625-1635
[Standard, 2004]
ISO, Standard. (2004). Mechanical vibration - Vibration of rotating machinery equipped with active magnetic bearings - part 3: Evaluation of stability margin. ISO 14839-3:2006(E).
[Jugo et al., 2005]
J. Jugo, I. Arredondo, V. Etxebarria.
Analysis and control design of MIMO systems based on symmetry properties.
Proceedings of 44th IEEE Conference on Decision and Control and 2005 European Control Conference,
[Jugo et al., 2006]
J. Jugo, I. Lizarraga, I. Arredondo.
Nonlinear analysis of an AMB system using harmonic domain LTV models.
Proceedings of IEEE International Conference on Control Applications,
[Kanemitsu et al., 2006]
Y. Kanemitsu, X.-B. Yong, S. Kijimoto, K. Matsuda.
Comparison of stability criteria for rotor levitated by active magnetic bearing.
Proceedings of the 10th International Symposium on Magnetic Bearings,
[Kasarda, 2000]
M.E.F. Kasarda.
An overview of active magnetic bearing technology and applications.
The Shock and Vibration Digest, 32 (2000), pp. 91-99
[Knospe, 2007]
C.R. Knospe.
Active magnetic bearings for machining applications.
Control Engineering Practice, 15 (2007), pp. 307-313
[Lanzon and Tsiotras, 2002]
A. Lanzon, P. Tsiotras.
Robust control of energy momentum wheels supported on active magnetic bearings using Hinf loop-shaping and musynthesis.
Proceedings of 15th Triennial World Congress,
[LaunchPoint, 2002]
LaunchPoint.
MBC500 Magnetic Bearing System Operating Instructions.
Goleta, CA, (2002),
[Li et al., 2006]
G. Li, H. Malsen, P.E. Allaire.
A note on ISO AMB stability margin.
Proceedings of the 10th International Symposium on Magnetic Bearings,
[Maslen and Meeker, 1995]
E.H. Maslen, D.C. Meeker.
Fault tolerance of magnetic bearings by generalized bias current linearization.
IEEE Trans on Magnetics, 31 (1995), pp. 2304-2314
[Nonami and Liu, 1999]
K. Nonami, Z. Liu.
Adaptive unbalance vibration control of magnetic bearing system using frequency estimation for multiple periodic disturbances with noise.
Proceedings of IEEE Conf. Control Applications,
[Quinn et al., 2005]
D.D. Quinn, G. Mani, M.E.F. Kasarda, T. Bash, D.J. Inman, R.G. Kirk.
Damage detection of a rotating cracked shaft using an active magnetic bearing as a force actuator - analysis and experimental verification.
IEEE Trans on Mechatronics, 10 (2005), pp. 640-647
[Schweitzer et al., 1994]
Schweitzer, G., H. Bleuler and A. Traxler (1994). Active Magnetic Bearings: Basics, Properties and Applications of Active Magnetic Bearings. vdf Hochschulverlag AG an der ETH Zürich. Zürich (Switzerland).
[Shi et al., 2004]
J. Shi, R. Zmood, L. Qin.
Synchronous disturbance attenuation in magnetic bearing systems using adaptive compensating signals.
Control Engineering Practice, 12 (2004), pp. 283-290
[Stephenson and Agapionu, 1996]
D.A. Stephenson, J.S. Agapionu.
Metal Cutting Theory and Practice.
Marcel Dekker, (1996),
[Suyuan et al., 2006]
Y. Suyuan, Y. Guojun, S. Lei, X. Yang.
Application and research of the active magnetic bearing in the nuclear power plant of high temperature reactor.
Proceedings of the 10th International Symposium on Magnetic Bearings,
[Tamisier and Carrère, 2004]
V. Tamisier, F. Carrère.
Synchronous unbalance cancellation across critical speed using a closedloop method.
Proceedings of the 10th International Symposium on Magnetic Bearings,
[Untaroiu et al., 2005]
A. Untaroiu, H.G. Wood, P.E. Allaire, A.L. Throckmorton, S. Day, S.M. Patel, P. Ellman, C. Tribble, D.B. Olsen.
Computational design and experimental testing of a novel axial flow LVAD.
ASAIO Journal, 51 (2005), pp. 702-710
[Wagner et al., 2002]
R.C. Wagner, D.R. Boyle, K. Decker.
Evaluation and improvement of eddy current position sensors in magnetically suspended flywheel systems.
Proceedings of 37th Intersociety Energy Conversion Engineering Conference,
Copyright © 2008. Elsevier España, S.L.. Todos los derechos reservados
Opciones de artículo