[1]Numerical Methods for Nonsmooth Dynami- cal Systems: Applications in Mechanics and Electronics. Springer Verlag; 2008.
[2]Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problem. ASME Nonlinear Dynamics. 1997; 14:231-47.
[3]Time-stepping for three- dimensional rigid-body dynamics. July 1999; 177(34):183-97.
[4]Bipedal Robots. Modeling, design and building walking robots. 1st Edition. Wiley; 2009.
[5]Análisis teórico y computacional de la marcha normal y patologica: Una revisión. Revista Medica Colombia- na. 2010; 18:183-96.
[6]A new design paradigm for the development of custom-fit soft sockets for lower limb prostheses. Computers in Industry. 2010; 61(6):513-23.
[7]The Linear Complementarity Problem. San Diego - California - USA: Academic Press; 1992.
[8]Prosthetics, exoskeletons, and rehabili- tation [grand challenges of robotics]. Robotics Automation Magazine, IEEE. march 2007; 14(1):30-4.
[9]Evaluation of a powered ankle-foot prosthetic system during walking. Archives of physical medicine and rehabilitation. 2012; 93:1911-8.
[10]Proposal of modeling, simulation and implementation of robotics leg prosthesis. In: Engineering in Medicine and Biology Society, 2001. Proceedings of the 23rd Annual International Conference of the IEEE. 2001; 2:1415-8.
[11]Amputee locomotion: Spring-like leg behavior and stiff- ness regulation using running-specific prostheses. Journal of Biomechanics. 2013; 46(14):2483-9.
[12]Human-Like Biomechanics: A Unified Mat- hematical Approach to Human Biomechanics and Humanoid Robotics. In- telligent Systems. Springer; 2008.
[13]Review of control algorithms for ro- botic ankle systems in lower-limb orthoses, prostheses, and exoskeletons. Medical Engineering & Physics. 2012; 34(4):397-408.
[14]Swing phase control of intelligent lower limb prosthesis using electrorheological fluid. Journal of Tsinghua University (Science and Technology). 1998; 30:40-3.
[15]Sep controlling parameter in design of above knee prosthesis with moving ankle. In: 17th Iranian Conference of Biomedical Engineering (ICBME). 2010; 1-4.
[16]Development of an above knee prosthesis using mr damper and leg simulator. In: ICRA. 2001; 3686-91.
[17]Mecánica. No. v. 1 in Curso de física teórica. Reverté. 1978.
[18]Adjustable spring mechanisms inspired by human musculoskeletal structure. Mechanism and Machine Theory. 2012; 54(0):76-98.
[19]Assistive mo- bility devices focusing on smart walkers: Classification and review. Robotics and Autonomous Systems. 2012; 60(4):548-62.
[20]Nonsmooth Mechanics and Applications. Vol. 302 of CISM International Centre for Mechanical Sciences. Springer Verlag. Ch. Unilate- ral contact and dry friction in finite freedom dynamics. 1988; 1-82.
[21]Development of adap- tive modular active leg (amal) using bipedal robotics technology. Robotics and Autonomous Systems. 2009; 57:603-16.
[22]Complementarity formulations and existence of so- lutions of dynamic multi-rigid-body contact problems with coulomb friction. 1996; 73(2):199-226.
[23]Design optimization of an above-knee prosthesis based on the kinematics of gait. In: Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual Internatio- nal Conference of the IEEE. 2008; 4274-7.
[24]Contributions á la commande dun robot bipéde 3D: modélisation, calcul des forces de réaction, commande et actionnement. Éditions Universitaires Européennes,, Saarbrúcken, Germany. 2011.
[25]Development of a simple and efficient above knee prosthesis. In: International Symposium on Advances in Robot Dyna- mics and Control. 2003.
[26]Variable impedance actuators: A re- view. Robotics and Autonomous Systems. Vazquez, J., Velasco-Villa, M.,;1; 2013. Análisis del deslizamiento en el punto de apoyo de un robot bípedo de 5-gdl. Revista Iberoamericana de Automática e Informática Industrial {RIAI}. 2013; 10(2):133-42.
[27]Variable stiffness actuated prosthetic knee to restore knee buckling during stance: A modeling study. Medical Engineering & Physics. 2013; 35(6):838-45.
[28]The swing phase of human walking is not a passive movement. Motor Control. 2000; 4:273-92.
[29]The knee joint design and control of above-knee intelligent bionic leg based on magneto-rheological damper. International Journal of Automation and Computing. 2010; 277-82.