covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Muestreo adaptativo aplicado a la robótica: Revisión del estado de la técnica
Información de la revista
Vol. 14. Núm. 2.
Páginas 123-132 (abril - junio 2017)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
3106
Vol. 14. Núm. 2.
Páginas 123-132 (abril - junio 2017)
Open Access
Muestreo adaptativo aplicado a la robótica: Revisión del estado de la técnica
Adaptive sampling in robotics: A survey
Visitas
3106
Ignacio Pastor, João Valente
Autor para correspondencia
jvalente@ing.uc3m.es

Autor para correspondencia.
Robotics Lab, Departamento de Ingenieria de Sistemas y Automática, Universidad Carlos III de Madrid, Av. Universidad 30. Leganés, 28911. Madrid. España
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

En este artículo se presenta la revisión de una técnica de muestreo de especial interés para aplicaciones a sistemas roboticos dedicados a la teledetección. Esta técnica es conocida como muestreo adaptativo. En este artículo se realiza una recopilación de las principales técnicas de muestreo adaptativo aplicados a la robótica, haciendo uso de la planificación de trayectorias. Finalmente, se destaca un conjunto de proyectos actualmente en desarrollo, sobre aplicaciones reales de la técnica de muestreo adaptativo en la robótica.

Palabras clave:
Robots de exteriores
Muestreo adaptativo
Teledetección
Planificación de trayectorias
Cobertura Óptima
Abstract

In this paper, a robotics sampling methodology known as Adaptive Sampling (AS) is reviewed. Although the method is not yet widespread in robotics, it plays an important role in remote sensing applications over rapidly changing environments. This article gives an introduction to AS and summarizes the main AS techniques and algorithms applied to robotics. Finally, a number of projects currently under development using AS to solve relevant monitoring or sampling issues, are highlighted.

Keywords:
Field robotics
Adaptive sampling
Remote sensing
Path planning
Optimal coverage
Referencias
[ASCO, 2016]
ASCO, 2016. Autonomous systems, control and optimization lab. http://asco.lcsr.jhu.edu/.
[ASTEP, 2016]
ASTEP, 2016. Astrobiology science and technology for exploring planets program. http://www.frc.ri.cmu.edu/projects/atacama/.
[ASTRIL, 2016]
ASTRIL, 2016. Autonomous system technologies research & integration laboratory. http://robotics.asu.edu/.
[Béjar and Ollero, 2008]
M. Béjar, A. Ollero.
Modelado y control de helicópteros autónomos. revisión del estado de la técnica.
Revista Iberoamericana de Automática e Informática Industrial {RIAI}, 5 (2008), pp. 5-16
[Bhatta et al., 2005]
Bhatta, P., Fiorelli, E., Lekien, F., Leonard, N.E., Paley, D.A., Zhang, F., Bachmayer, R., Sepulchre, R., 2005. Coordination of an underwater glider fleet for adaptive sampling.
[Camilli et al., 2004]
Camilli, R., Bingham, B., Jakuba, M., Singh, H., Whelan, J., 2004. Integrating in-situ chemical sampling with auv control systems. In: OCEANS’04. MTTS/IEEE TECHNO-OCEAN’04. Vol. 1. IEEE, pp. 101-109.
[Cannell and Stilwell, 2005]
Cannell, C.J., Stilwell, D.J., 2005. A comparison of two approaches for adaptive sampling of environmental processes using autonomous underwater vehicles. In: OCEANS, 2005. Proceedings of MTS/IEEE. IEEE, pp. 1514-1521.
[Carreras et al., 2012]
M. Carreras, P. Ridao, R. García, D. Ribas, N. Palomeras.
Inspección visual subacuática mediante robótica submarina.
Revista Iberoamericana de Automática e Informática Industrial {RIAI}, 9 (2012), pp. 34-45
[Castillo et al., 2007]
P. Castillo, P. García, R. Lozano, P. Albertos.
Modelado y estabilización de un helicóptero con cuatro rotores.
Revista Iberoamericana de Automática e Informática Industrial {RIAI}, 4 (2007), pp. 41-57
[Chaudhuri and Stenger, 2005]
A. Chaudhuri, H. Stenger.
Survey sampling: theory and methods.
CRC Press, (2005),
[Comunidad de Madrid, 2015]
Comunidad de Madrid, 2015. Los drones y sus aplicaciones en la ingenierivil.
[Detweiler et al., 2015]
C. Detweiler, J.-P. Ore, D. Anthony, S. Elbaum, A. Burgin, A. Lorenz.
Environmental reviews and case studies: Bringing unmanned aerial systems closer to the environment.
Environmental Practice, 17 (2015), pp. 188-200
9
[Dunbabin and Marques, 2012]
M. Dunbabin, L. Marques.
Robots for environmental monitoring: Significant advancements and applications.
Robotics Automation Magazine, IEEE, 19 (March 2012), pp. 24-39
[Envirobot, 2016]
Envirobot, 2016. A swimming robot piloted by biological sensors to measure and locate pollutants in aquatic systems. http://wp.unil.ch/envirobot/.
[Fiorelli et al., 2003]
Fiorelli, E., Bhatta, P., Leonard, N.E., Shulman, I., 2003. Adaptive sampling using feedback control of an autonomous underwater glider fleet. In: Proceedings of 13th Int. Symp. on Unmanned Untethered Submersible Technology (UUST).
[Fiorelli et al., 2006]
E. Fiorelli, N.E. Leonard, P. Bhatta, D.A. Paley, R. Bachmayer, D.M. Fratantoni.
Multi-auv control and adaptive sampling in monterey bay.
Oceanic Engineering, IEEE Journal of, 31 (2006), pp. 935-948
[Hombal et al., 2010]
Hombal, V., Sanderson, A., Blidberg, D., Sept 2010. Multiscale adaptive sampling in environmental robotics. In: Multisensor Fusion and Integration for Intelligent Systems (MFI), 2010 IEEE Conference on. pp. 80-87.
[Kim and Shell, 2014]
Kim, Y.-H., Shell, D., May 2014. Distributed robotic sampling of non-homogeneous spatio-temporal fields via recursive geometric sub-division. In: Robotics and Automation (ICRA), 2014 IEEE International Conference on. pp. 557-562.
[Lermusiaux, 2007]
P.F. Lermusiaux.
Adaptive modeling, adaptive data assimilation and adaptive sampling.
Physica D: Nonlinear Phenomena, 230 (2007), pp. 172-196
[Lermusiaux et al., 2007]
P.F. Lermusiaux, P.J. Haley Jr., N.K. Yilmaz.
Environmental prediction, path planning and adaptive sampling: Sensing and modeling for efficient ocean monitoring, management and pollution control.
Sea Technology, 48 (2007), pp. 35-38
[Limnobotics, 2016]
Limnobotics, 2016. The autonomous sampling boat. http://limnobotics.ch/en/.
[Low et al., 2005]
Low, K.H., Gordon, G.J., Dolan, J.M., Khosla, P., 2005. Adaptive sampling for multi-robot wide area prospecting.
[Low et al., 2007]
Low, K.H., Gordon, G.J., Dolan, J.M., Khosla, P., 2007. Adaptive sampling for multi-robot wide-area exploration. In: Robotics and Automation, 2007 IEEE International Conference on. IEEE, pp. 755-760.
[Moreno et al., 2014]
H.A. Moreno, R. Saltarén, L. Puglisi, I. Carrera, P. Cárdenas, C. Álvarez.
Robótica submarina: Conceptos, elementos, modelado y control.
Revista Iberoamericana de Automática e Informática Industrial {RIAI}, 11 (2014), pp. 3-19
[MSEAS, 2016]
MSEAS, 2016. Multidisciplinary simulation, estimation, and assimilation systems. http://mseas.mit.edu/.
[Mysorewala et al., 2012]
M. Mysorewala, L. Cheded, D. Popa.
A distributed multi-robot adaptive sampling scheme for the estimation of the spatial distribution in widespread fields.
EURASIP Journal on Wireless Communications and Networking 2012, (2012),
[Mysorewala et al., 2009]
M. Mysorewala, D. Popa, F. Lewis.
Multi-scale adaptive sampling with mobile agents for mapping of forest fires.
Journal of Intelligent and Robotic Systems, 54 (2009), pp. 535-565
[Neumann et al., 2012]
P. Neumann, S. Asadi, A. Lilienthal, M. Bartholmai, J. Schiller.
Autonomous gas-sensitive microdrone: Wind vector estimation and gas distribution mapping.
Robotics Automation Magazine, IEEE, 19 (March 2012), pp. 50-61
[NIMBUS, 2016]
NIMBUS, 2016. Nebraska intelligent mobile unmanned systems lab. http://nimbus.unl.edu/.
[Ortiz et al., 2015]
F. Ortiz, A. Guerrero, F. Sánchez-Ledesma, F. García-Córdova, D. Alonso, J. Gilabert.
Diseño del software de control de un {UUV} para monitorización oceanográfica usando un modelo de componentes y framework con despliegue flexible.
Revista Iberoamericana de Automática e Informática Industrial {RIAI}, 12 (2015), pp. 325-337
[Ouyang et al., 2014]
R. Ouyang, K.H. Low, J. Chen, P. Jaillet.
Multi-robot active sensing of non-stationary gaussian process-based environmental phenomena.
Proceedings of the 2014 international conference on Autonomous agents and multi-agent systems. International Foundation for Autonomous Agents and Multiagent Systems, pp. 573-580
[Popa et al., 2004]
Popa, D.O., Sanderson, A.C., Komerska, R.J., Mupparapu, S.S., Blidberg, D.R., Chappel, S.G., 2004. Adaptive sampling algorithms for multiple autonomous underwater vehicles. In: Autonomous Underwater Vehicles, 2004 IEEE/OES. IEEE, pp. 108-118.
[Prados et al., 2013]
R. Prados, R. García, L. Neumann.
Construcción automática de ortofotomapas: una aproximación fotométrica.
Revista Iberoamericana de Automática e Informática Industrial {RIAI}, 10 (2013), pp. 104-115
[Rahimi et al., 2005]
Rahimi, M., Hansen, M., Kaiser,W. J., Sukhatme, G.S., Estrin, D., 2005. Adaptive sampling for environmental field estimation using robotic sensors. In: Intelligent Robots and Systems, 2005.(IROS 2005). 2005 IEEE/RSJ International Conference on. IEEE, pp. 3692-3698.
[Rahimi et al., 2004]
Rahimi, M., Pon, R., Kaiser, W.J., Sukhatme, G., Estrin, D., Srivastava, M., 2004. Adaptive sampling for environmental robotics. In: Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE International Conference on. Vol. 4. IEEE, pp. 3537-3544.
[Seber and Salehi, 2012]
G.A. Seber, M.M. Salehi.
Adaptive sampling designs: inference for sparse and clustered populations.
Springer Science & Business Media, (2012),
[Smith et al., 2011]
R.N. Smith, M. Schwager, S.L. Smith, B.H. Jones, D. Rus, G.S. Sukhatme.
Persistent ocean monitoring with underwater gliders: Adapting sampling resolution.
Journal of Field Robotics, 28 (2011), pp. 714-741
[Sukhatme et al., 2007]
G.S. Sukhatme, A. Dhariwal, B. Zhang, C. Oberg, B. Stauffer, D.A. Caron.
Design and development of a wireless robotic networked aquatic microbial observing system.
Environmental Engineering Science, 24 (2007), pp. 205-215
[Thompson et al., 2013]
Thompson, D.R., Cabrol, N.A., Furlong, M., Hardgrove, C., Low, B.K. H., Moersch, J., Wettergreen, D., May 2013. Adaptive sensing of time series with application to remote exploration. In: Robotics and Automation (ICRA), 2013 IEEE International Conference on. pp. 3463-3468.
[Thompson, 2011]
Thompson, S., 2011. Adaptive network and spatial sampling. Statistics Canada 37, Supplement (2), 183-196.
[Thompson and Collins, 2002]
Thompson, S.K., Collins, L.M., 2002. Adaptive sampling in research on risk-related behaviors. Drug and Alcohol Dependence 68, Supplement, 57-67.
[Yilmaz et al., 2008]
N. Yilmaz, C. Evangelinos, P. Lermusiaux, N. Patrikalakis.
Path planning of autonomous underwater vehicles for adaptive sampling using mixed integer linear programming.
Oceanic Engineering, IEEE Journal of, 33 (Oct 2008), pp. 522-537
[Yilmaz, 2005]
Yilmaz, N.K., 2005. Path planning of autonomous underwater vehicles for adaptive sampling. Ph.D. thesis, Massachusetts Institute of Technology.
[Yu et al., 2012]
H. Yu, Y. Jiao, Z. Su, K. Reid.
Performance comparison of traditional sampling designs and adaptive sampling designs for fishery-independent surveys: A simulation study.
Fisheries Research, 113 (2012), pp. 173-181
[Zarco-Tejada et al., 2008]
P.J. Zarco-Tejada, J.A.J. Berni, L. Suárez, E. Fereres.
A new era in remote sensing of crops with unmanned robots.
SPIE Newsroom, (2008),
[Zhang and Sukhatme, 2007]
B. Zhang, G.S. Sukhatme.
Adaptive sampling for estimating a scalar field using a robotic boat and a sensor network.
Robotics and Automation, 2007 IEEE International Conference on. IEEE, pp. 3673-3680
Descargar PDF
Opciones de artículo