covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Diseño de un Controlador Difuso mediante la Síntesis Difusa de Lyapunov para l...
Información de la revista
Vol. 14. Núm. 2.
Páginas 133-140 (abril - junio 2017)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
2336
Vol. 14. Núm. 2.
Páginas 133-140 (abril - junio 2017)
Open Access
Diseño de un Controlador Difuso mediante la Síntesis Difusa de Lyapunov para la Estabilización de un Péndulo de Rueda Inercial
Design of a fuzzy controller via fuzzy Lyapunov synthesis for the stabilization of an inertial wheel pendulum
Visitas
2336
Nohe R. Cazarez-Castroa,
Autor para correspondencia
nohe@ieee.org

Autor para correspondencia.
, Luis T. Aguilarb, Selene L. Cardenas-Maciela, Carlos A. Goribar-Jimeneza, Mauricio Odreman-Veraa
a Tecnológico Nacional de México - Instituto Tecnológico de Tijuana, Av. ITR Tijuana y Blvd. Alberto Limón Padilla, S/N, 22510, Tijuana, Baja California, México
b Instituto Politécnico Nacional–CITEDI, avenida Instituto Politécnico Nacional No. 1310 Colonia Nueva Tijuana, Tijuana 22435 México
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

En el presente trabajo se reporta el diseño de un controlador difuso tipo Mamdani para el problema de estabilización de un péndulo de rueda inercial. Las reglas difusas son obtenidas mediante la síntesis difusa de Lyapunov, lo cual permite mantener al mínimo el uso de la heurística, y desde la etapa de diseño garantizar estabilidad en lazo cerrado. Por otra parte el diseño de las reglas difusas es mucho más simple que la ardua tarea de resolver las ecuaciones diferenciales no lineales usadas tradicionalmente para modelar sistemas de control. Merece énfasis especial el hecho de que el diseño se hace libre del modelo matemático del sistema a controlar.

Palabras clave:
Control difuso
Estabilidad de Lyapunov
Sistema subactuado
Abstract

In this paper was presented the design of a Mamdani type fuzzy controller to solve the stabilization problem for an inertial wheel pendulum. The fuzzy rule base are designed following the fuzzy Lyapunov synthesis, which guarantee the local asymptotic stability of the closed-loop system, by using a Lyapunov function whose time-derivative is negative semidefinite, while the use of heuristics is minimized in the design process. Moreover, the design of the fuzzy rule base is simplest than the hard task of solve the nonlinear differential equations traditionally used to model control systems. Deserves special emphasis the fact that the design is made without a mathematical model of the inertia wheel pendulum.

Keywords:
Fuzzy control
Lyapunov stability
Underactuated system
Referencias
[Andary et al., 2009]
S. Andary, A. Chemori, S. Krut.
Control of the underactuated inertia wheel inverted pendulum for stable limit cycle generation.
Advanced Robotics, 23 (2009), pp. 1999-2014
[Andrievsky, 2011]
B. Andrievsky.
Global stabilization of the unstable reaction-wheel pendulum.
Automation and Remote Control, 72 (2011), pp. 1981-1993
[Becerikli and Celik, 2007]
Y. Becerikli, B.K. Celik.
Fuzzy control of inverted pendulum and concept of stability using java application.
Mathematical and Computer Modelling, 46 (2007), pp. 24-37
[Brockett, 1983]
R. Brockett.
Differential Geometric Control Theory.
Ch. Asymptotic stability and feedback stabilization, Birkhäuser, (1983), pp. 181-191
[Castillo et al., 2008]
O. Castillo, L. Aguilar, N. Cazarez, S. Cardenas.
Systematic design of a stable type-2 fuzzy logic controller.
Applied Soft Computing, 8 (2008), pp. 1274-1279
[Castillo et al., 2006]
O. Castillo, N. Cazarez, L. Aguilar, D. Rico.
Intelligent control of dynamic systems using type-2 fuzzy logic and stability issues.
International Mathematical Forum, 1 (2006), pp. 1371-1382
[Cazarez-Castro et al., 2010]
N.R. Cazarez-Castro, L.T. Aguilar, O. Castillo.
Fuzzy logic control with genetic membership function parameters optimization for the output regulation of a servomechanism with nonlinear backlash.
Expert Systems with Applications, 37 (2010), pp. 4368-4378
[Hernández, 2003]
V.M. Hernández.
A combined sliding mode-generalized pi control scheme for swinging up and balancing the inertia wheel pendulum.
Asian Journal of Control, 5 (2003), pp. 620-625
[Iriarte et al., 2013]
R. Iriarte, L.T. Aguilar, L. Fridman.
Second order sliding mode tracking controller for inertia wheel pendulum.
Journal of the Franklin Institute, 350 (2013), pp. 92-106
[Kelly et al., 2000]
R. Kelly, J. Llamas, R. Campa.
A measurement procedure for viscous and coulomb friction.
Instrumentation and Measurement, IEEE Transactions on, 49 (Aug 2000), pp. 857-861
[Khalil, 2002]
H.K. Khalil.
Nonlinear Systems.
3rd Edition, Prentice Hall, (2002),
[Korotnikov, 1998]
V. Korotnikov.
Partial Stability and Control.
1st Edition., Springer- Birkhäuser Basel, (1998),
[Lyapunov, 1892]
A. Lyapunov.
The general problem of the stability of motion (in russian).
Phd, Univ, (1892),
[Mamdani and Assilian, 1975]
E. Mamdani, S. Assilian.
An experiment in linguistic synthesis with a fuzzy logic controller.
International Journal of Man-Machine Studies, 7 (1975), pp. 1-13
[Margaliot and Langholz, 1999]
M. Margaliot, G. Langholz.
Fuzzy lyapunov-based approach to the design of fuzzy controllers.
Fuzzy Sets and Systems, 106 (1999), pp. 49-59
[Martinez-Soto et al., 2012]
R. Martinez-Soto, A. Rodriguez, O. Castillo, L.T. Aguilar.
Gain optimization for inertia wheel pendulum stabilization using particle swarm optimization and genetic algorithms.
International Journal of Innovative Computing, Information and Control, 8 (2012), pp. 4421-4430
[Ng et al., 2013]
W.M. Ng, D.E. Chang, S.-H. Song.
Four representative applications of the energy shaping method for controlled lagrangian systems.
Journal of Electrical Engineering and Technology, 8 (2013), pp. 1579-1589
[Qaiser et al., 2006]
Qaiser, N., Iqbal, N., Hussain, A., Qaiser, N., 2006. Stabilization of non-linear inertia wheel pendulum system using a new dynamic surface control based technique. In: Engineering of Intelligent Systems, 2006 IEEE International Conference on. pp. 1–6.
[Qaiser et al., 2007]
N. Qaiser, N. Iqbal, A. Hussain, N. Qaiser.
Exponential stabilization of the inertia wheel pendulum using dynamic surface control.
Journal of Circuits, Systems and Computers, 16 (2007), pp. 81-92
[Ye et al., 2007]
H. Ye, H. Wang, H. Wang.
Stabilization of a pvtol aircraft and an inertia wheel pendulum using saturation technique.
IEEE Transactions on Control Systems Technology, 15 (Nov 2007), pp. 1143-1150
[Yi and Yubazaki, 2000]
J. Yi, N. Yubazaki.
Stabilization fuzzy control of inverted pendulum systems.
Artificial Intelligence in Engineering, 14 (2000), pp. 153-163
Descargar PDF
Opciones de artículo