covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Control Neuronal en Línea para Regulación y Seguimiento de Trayectorias de Pos...
Información de la revista
Vol. 14. Núm. 2.
Páginas 141-151 (abril - junio 2017)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
2691
Vol. 14. Núm. 2.
Páginas 141-151 (abril - junio 2017)
Open Access
Control Neuronal en Línea para Regulación y Seguimiento de Trayectorias de Posición para un Quadrotor
On Line Adaptive Neurocontroller for Regulating Angular Position and Trajectory of Quadrotor System
Visitas
2691
Hugo Yañez-Badilloa, Ruben Tapia-Olverab,
Autor para correspondencia
rtapia@fi-b.unam.mx

Autor para correspondencia.
, Omar Aguilar-Mejíaa, Francisco Beltran-Carbajalc
a Departamento de posgrado, Universidad Politécnica de Tulancingo, Ingenierías #100, Col. Huapalcalco, 43629, Tulancingo, Hgo., México
b Departamento de Ingeniería Eléctrica, Universidad Nacional Autónoma de México, Av. Universidad 3000, Cd. Universitaria, Delegación Coyoacán, 04510 Ciudad de México, México
c Departamento de Energía, Universidad Autónoma Metropolitana, Unidad Azcapotzalco, Av. San Pablo 180, Col. Reynosa Tamaulipas, Delegación Azcapotzalco, 02200 Ciudad de México, México
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

Los sistemas de control automático día a día se han convertido en elementos importantes en la vida cotidiana, en tal sentido, se deben proponer nuevas y mejores formas de incorporar modelos matemáticos y algoritmos de control adaptativos para superar la gran cantidad de cambios técnicos y físicos a los que se enfrentan para su utilización. En este artículo se realiza el control de posición y seguimiento de trayectorias para un Quadrotor. Debido a la naturaleza no lineal de este sistema subactuado, se propone el empleo de un controlador adaptativo basado en redes neuronales B-spline que permita determinar las señales de control mediante un entrenamiento dividido en dos etapas: a) uno inicial fuera de línea y; b) uno continuo en línea. Esta forma de aprendizaje permite al Quadrotor extender un desempeño satisfactorio ante diferentes condiciones operativas y seguimiento de los valores de referencia. Los resultados de simulación verifican la aplicabilidad del controlador propuesto y el impacto que se tiene en el desempeño del sistema minimizando la necesidad de contar con un modelo matemático no lineal detallado, así como el conocimiento exacto de los valores de los parámetros del Quadrotor.

Palabras clave:
Control Neuronal
Control Libre de Modelo
Aprendizaje Automático
Sistemas Subactuados
Abstract

Automatic control systems every day become more important in everyday life; therefore, it must find new and better ways to incorporate mathematical models and adaptive control algorithms to cope with a number of technical and physical challenges for exploitation. In this paper, the algorithm of the dynamic model of a Quadrotor applied to an angular position and trajectory control as a study case is detailed. Due to nonlinear nature of this type of systems, an adaptive on line neurocontroller algorithm based on B-spline neural networks is proposed, the learning procedure is divided in two stages: a) an initial off line training and; b) an on line continuous learning. This form of learning allows the Quadrotor extend its satisfactory performance at different operating conditions and trajectory tracking. The simulation results demonstrate the applicability of the developed model and the impact of dynamic control on the system performance, diminishing the exact model requirement and the possibility to incorporate the system non linearities.

Keywords:
Neural Network Control
Model-Free Control
Automatic Learning
Underactuated Systems
Referencias
[Argentim et al., 2013]
Argentim L. M., Rezende W. C., Santos P. E., Aguiar R. A., 2013. PID, LQR and LQR-PID on a Quadcopter Platform. Proc. of the IEEE International Conference on Informatics, Electronics & Vision (ICIEV), 1-6. DOI: 10.1109/ICIEV.2013.6572698
[Bauer et al., 2008]
P. Bauer, G. Ritzinger, A. Soumelidis, J. Bokor.
LQ Servo control design with Kalman filter for a quadrotor UAV.
Periodica Polytechnic Transportation Engineering, 36 (2008), pp. 9-14
[Benallegue et al., 2008]
A. Benallegue, A. Mokhtari, L. Fridman.
High-order sliding-mode observer for a quadrotor UAV.
International Journal of Robust and Nonlinear Control, 18 (2008), pp. 427-440
[Bouabdallah et al., 2004]
Bouabdallah S., Noth A., Siegwart R., 2004. PID vs LQ Control Techniques Applies to an Indoor micro quadrotor. Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems 3, 2451-2456. DOI: 10.1109/IROS.2004.1389776
[Bouabdallah and Siegwart, 2005]
Bouabdallah S., Siegwart R., 2005. Backstepping and Sliding-mode Techniques. Applied to an Indoor Micro Quadrotor. Proc. of the IEEE International Conference on Robotics and Automation, 2247-2252. DOI: 10.1109/ROBOT.2005.1570447
[Bouabdallah and Siegwart, 2007]
Bouabdallah S., Siegwart R., 2007. Full Control of a Quadrotor. Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 153-158. DOI: 10.1109/IROS.2007.4399042
[Boudjedir et al., 2014]
H. Boudjedir, O. Bouhali, N. Rizoug.
Adaptive neural network control based on neural observer for a quadrotor unmanned aerial vehicle.
Advanced Robotics, 28 (2014), pp. 1151-1164
[Bresciani, 2008]
Bresciani T., 2008. Modeling, Identification and Control of a Quadrotor Helicopter. Master Thesis. Department of Automatic Control, Lund University, Suecia.
[Brown and Harris, 1994]
M. Brown, C. Harris.
Neurofuzzy Adaptive Modelling and Control.
Prentice Hall International, (1994),
[Castillo et al., 2007]
P. Castillo, P. García, R. Lozano, P. Albertos.
Modelado y estabilización de un Helicóptero con cuatro rotores.
Revista Iberoamericana de Automática e Informática Industrial, 4 (2007), pp. 41-57
[Chee and Zhong, 2013]
K.Y. Chee, Z.W. Zhong.
Control, navigation and collision avoidance for an unmanned aerial vehicle.
Sensors and Actuators A: Physical, 190 (2013), pp. 66-76
[Dierks and Jagannathan, 2010]
T. Dierks, S. Jagannathan.
Output Feedback Control of a Quadrotor UAV Using Neural Networks.
IEEE Transactions on Neural Networks, 21 (2010), pp. 50-66
[Dikmen et al., 2009]
Dikmen I. C., Arisoy A., Temeltas H., 2009. Attitude Control of a Quadrotor. Proc. of the 14th IEEE International Conference on Recent Advances in Space Technologies, 722-727. DOI: 10.1109/RAST.2009.5158286
[Dydek et al., 2013]
Z.T. Dydek, A.M. Annaswamy, E. Lavretsky.
Adaptive configuration control of multiple UAVs.
Control Engineering Practice, 21 (2013), pp. 1043-1052
[Emran and Yesildirek, 2014]
B. Emran, A. Yesildirek.
Robust Nonlinear Composite Adaptative Control of Quadrotor.
International Journal of Digital Information and Wireless Communications, 4 (2014), pp. 213-225
[En-Hui et al., 2014]
Z. En-Hui, X. Jing-Jing, L. Ji-Liang.
Second order sliding mode control for a quadrotor UAV.
ISA Transactions, 53 (2014), pp. 1350-1356
[Erginer and Altug, 2007]
Erginer B., Altug E., 2007. Modeling and PD Control of a Quadrotor VTOL Vehicle. Proc. of the IEEE Intelligent Vehicles Symposium, 894-899. DOI: 10.1109/IVS.2007.4290230
[Estelles and Tomas-Rodriguez, 2015]
S. Estelles, M. Tomas-Rodriguez.
Quadrotor multibody modelling by vehiclesim: adaptive technique for oscillations in a PVA control system.
Journal of Vibration and Control., (2015),
[Fatan et al., 2013]
Fatan M., Sefidgari B. L., Barenji A. V., 2013. An Adaptive Neuro PID for Controlling the Altitude of Quadcopter Robot. Proc. of the IEEE 18th International Conference on Methods and Models in Automation and Robotics (MMAR), 662-665. DOI: 10.1109/MMAR.2013.6669989
[Hoffmann et al., 2008]
Hoffmann G. M., Waslander S. L., Tomlin C. J., 2008. Quadrotor Helicopter trajectory tracking control. In AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, Hawaii, USA.
[Jing-Jing and En-Hui, 2014]
X. Jing-Jing, Z. En-Hui.
Position and attitude tracking control for a quadrotor UAV.
ISA Transactions, 53 (2014), pp. 725-731
[Johnson and Leang, 2013]
Johnson N. L., Leang K. K., 2013. Enhanced proportional-derivative control of a micro Quadcopter. Proc. of the ASME Dynamics Systems and Control Conference, 1-5. DOI:10.1115/DSCC2013-3990
[Luque-Vega et al., 2012]
L. Luque-Vega, B. Castillo-Toledo, A.G. Loukianov.
Robust block second order sliding mode control for a quadrotor.
Journal of the Franklin Institute, 349 (2012), pp. 719-739
[Meng Leong et al., 2012]
Meng Leong B. T., Ming Low S., Po-Leen Ooi M., 2012. Low-Cost Microcontroller-based Hover Control Design of a Quadcopter. Proc. of the International Symposium on Robotics and Intelligent Sensors (IRIS) 41. 458-464. DOI: 10.1016/j.proeng.2012.07.198
[Mian and Daobo, 2008]
A.A. Mian, W. Daobo.
Modeling and Backstepping-based Nonlinear Control Strategy for a 6 DOF Quadrotor Helicopter.
Chinese Journal of Aeronautics, 21 (2008), pp. 261-268
[Mian et al., 2008]
Mian A. A., Mian I. A., Daobo W., 2008. Backstepping based PID Control Strategy for an Underactuated Aerial Robot. Proc. of the 17th IFAC World Congress 17, 15636-15641. DOI: 10.3182/20080706-5-KR-1001.02644
[Mohamed Raju, 2010]
Mohamed Raju H., 2010. Dynamics Modeling and Control of a Quad-Rotor Helicopter. Master Thesis. Memorial University of Newfoundland, Faculty of Engineering & Applied Science, Canada.
[Nicol et al., 2008]
Nicol C., Macnab C. J. B., Ramirez-Serrano A., 2008. Robust Neural Network Control of a Quadrotor helicopter. Proc. of the IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), 1233-1238. DOI: 10.1109/CCECE.2008.4564736
[Osman et al., 2005]
A.H. Osman, T. Abdelazim, O.P. Malik.
Transmission Line Distance Relaying Using on-line Trained Neural Network.
IEEE Transactions on Power Delivery, 20 (2005), pp. 1257-1264
[Pipatpaibul and Ouyang, 2013]
Pipatpaibul P. -i., Ouyang P. R., 2013. Application of Online Iterative Learning Tracking Control for Quadrotor UAVs. ISRN Robotics Volume 2013. ID 476153.
[Saad, 1998]
D. Saad.
On-line learning in neural networks.
Cambridge University Press, (1998),
[Salih et al., 2010]
A.L. Salih, M. Moghavvemi, H.A. Mohamed, K.S. Gaeid.
Flight PID controller design for a UAV quadrotor.
Scientific Research and Essays, 5 (2010), pp. 3660-3667
Descargar PDF
Opciones de artículo