covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Reduciendo distancias entre el control borroso y el control no lineal: luces y s...
Información de la revista
Vol. 6. Núm. 2.
Páginas 26-35 (abril 2009)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 6. Núm. 2.
Páginas 26-35 (abril 2009)
Open Access
Reduciendo distancias entre el control borroso y el control no lineal: luces y sombras
Visitas
2209
Antonio Sala
, Carlos V. Ariño**
* Dep. Ing. Sistemas y Automática, Instituto de Automática e Informática Industrial. Universidad Politécnica de Valencia, Cno. Vera s/n, 46022 Valencia, España
** Departamento de Ingeniería de Sistemas Industriales y Diseño, Universitat Jaume I, Av. de Vicent Sos Baynat, s/n, 12071 Castelló de la Plana, España
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas
Resumen

Aunque el control borroso nació como una metodología heurística, las formulaciones en desigualdades matriciales lineales del control borroso se han convertido en la herramienta más utilizada en dicho área desde los años 90. Muchos sistemas no lineales pueden ser modelados como sistemas borrosos (con la metodología de sector no lineal) de modo que el control borroso puede considerarse como una técnica para el control no lineal. Aunque se han obtenido muchos y buenos resultados, quedan algunas fuentes de conservadurismo cuando se comparan con otros enfoques de control no lineal. Este artículo discute dichas cuestiones de conservadurismo (sombras) y plantea algunas ideas (luces) para resolverlas, aunque muchas de las propuestas tienen alto coste computacional.

Palabras clave:
Control borroso
Control inteligente
Desigualdades matriciales lineales
El Texto completo está disponible en PDF
References
[Al-Hadithi et al., 2005]
B.M. Al-Hadithi, F. Matía, A. Jiménez.
Controladores Borrosos Basados en Estructura Variable con Modos Deslizantes: Aspectos y Similitudes.
Revista iberoamericana de automática e informática industrial (RIAI), 2 (2005), pp. 19-35
[Al-Hadithi et al., 2007]
B.M. Al-Hadithi, F. Matia, A. Jiménez.
Análisis de estabilidad de sistemas borrosos.
Revista iberoamericana de automática e informática industrial (RIAI), 4 (2007), pp. 7-25
[Albertos and Sala, 2002]
P. Albertos, A. Sala.
Iterative Identification and Control: Advances in Theory and Applications.
Springer, (2002),
[Albertos and Sala, 2004a]
P. Albertos, A. Sala.
El Control Borroso: Una Metodología Integradora.
Revista iberoamericana de automática e informática industrial (RIAI), 1 (2004), pp. 22-31
[Albertos and Sala, 2004b]
P. Albertos, A. Sala.
Multivariable control systems—an engineering approach.
Springer, (2004),
[Albertos and Sala, 2004c]
P. Albertos, A. Sala.
Perspectives of fuzzy control: lights and shadows.
Proc. of 2nd International IEEE Confe-rence on Intelligent Systems, 1 (2004),
[Andújar et al., 2007]
J.M. Andújar, A.J. Barragán, M.E.G. Arias, M. Maestre.
Control borroso multivariable basado en heurística. Un caso práctico: grúa porta contenedores.
Revista iberoamericana de automática e informática industrial (RIAI), 4 (2007), pp. 81-89
[Apkarian and Adams, 1998]
P. Apkarian, R.J. Adams.
Advanced gain-scheduling techniques for uncertain systems.
IEEE Trans. Control Syst. Techn, 6 (1998), pp. 21-32
[Aracil et al., 1989]
J. Aracil, A. Ollero, A. Garcia-Cerezo.
Stability indi-ees for the global analysis of expert control systems.
Systems, Man and Cybernetics, IEEE Transactions on, 19 (1989), pp. 998-1007
[Aracil and Gordillo, 2000]
J. Aracil, F. Gordillo.
Stability Issues in Fuzzy Control.
Physica-Verlag Heidelberg, (2000),
[Ariño et al., 2007]
C. Ariño, A. Sala, J.L. Navarro.
Diseño de controladores en varios puntos de funcionamiento para una clase de modelos borrosos Takagi-Sugeno afines.
Revista iberoamericana de automática e informática industrial (RIAI), 4 (2007), pp. 98-105
[Ariño and Sala, 2007a]
C. Ariño, A. Sala.
Design of multiple-parameterisation PDC controllers via relaxed conditions for multi-dimensional fuzzy summations.
Proc. of Fuzz-IEEE’07,
[Ariño and Sala, 2007b]
C. Ariño, A. Sala.
Relaxed LMI conditions for closed loop fuzzy systems with tensor product structure.
Eng. Appl. Artif. Intell., 20 (2007), pp. 1036-1046
[Baranyi, 2004]
P. Baranyi.
TP model transformation as a way to LMI- based controller design.
Industrial Electronics, IEEE Transactions on, 51 (2004), pp. 100-387
[Bondia et al., 2006]
J. Bondia, A. Sala, J. Picó, M.A. Sainz.
Controller design under fuzzy pole-placement speciflcations: an interval arithmetic approach.
IEEE Trans. on Fuzzy Systems, 14 (2006), pp. 822-836
[Bondia et al., 2005]
J. Bondia, A. Sala, J. Pico.
Possibilistic Robust Control For Fuzzy Plants: Control Performance Degradation.
16th IFAC World Congress, pp. 1-6
[Boyd et al., 1994]
S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan.
Linear matrix inequalities in system and control theory.
SIAM, (1994),
[Boyd and Vandenberghe, 2004]
S. Boyd, L. Vandenberghe.
Convex Optimization.
Cambridge University Press, (2004),
[Burgos-Artizzu et al., 2007]
X.P. Burgos-Artizzu, A. Ribeiro, M. de Santos.
Controlador Borroso Multivariable para el Ajuste de Tratamientos en Agricultura de Precisión.
Revista iberoamericana de automática e informática industrial (RIAI), 4 (2007), pp. 64-71
[Chen et al., 2007]
B. Chen, X. Liu, S. Tong.
Adaptive Fuzzy Output Tracking Control of MIMO Nonlinear Uncertain Systems.
IEEE Trans. Fuzzy Systems, 15 (2007), pp. 287
[Chesi et al., 2003]
G. Chesi, A. Garulli, A. Tesi, A. Vicino.
Homogeneous Lyapunov functions for systems with structured uncertainties.
Automática, 39 (2003), pp. 1027-1035
[Diez et al., 2006]
J.L. Diez, A. Sala, J. LuisÑavarro.
Target-shaped possibilistic clustering applied to local-model identiflcation.
Engineering Applications of Artificial Intelligence, 19 (2006), pp. 201-208
[Diez et al., 2004]
J.L. Diez, J.L. Navarro, A. Sala.
Algoritmos De Agrupamiento En La Identificación De Modelos Borrosos.
Rev. Iberoamericana de Automática e Informática Industrial, 1 (2004), pp. 32-41
[Diez et al., 2007]
J.L. Diez, J.L. Navarro, A. Sala.
A Fuzzy Clustering Algorithm Enhancing Local Model Interpretability.
Soft Computing, 11 (2007), pp. 973-983
[Driankov, 1996]
Driankov, D. (1996). An Introduction to Fuzzy Control. Springer
[Driankov, 1996]
A. Evsukoff, S. Gentil, J. Montmain.
Fuzzy reasoning in co-operative supervisión systems.
Control Engineering Practice, 8 (2000), pp. 389-407
[Fang et al., 2006]
Chun-Hsiung Fang, Liu Yung-Sheng, Kau Shih-Wei, Hong Lin, Lee Ching-Hsiang.
A New LMI-Based Approach to Relaxed Quadratic Stabilization of T-S Fuzzy Control Systems.
IEEE Trans. Fuzzy Syst, 14 (2006), pp. 286-397
[Feng, 2003]
G. Feng.
Controller synthesis of fuzzy dynamic systems based on piecewise lyapunov functions.
IEEE Trans. Fuzzy Systems, 11 (2003), pp. 605-612
[Feng, 2006]
G. Feng.
A survey on analysis and design of model-based fuzzy control systems.
IEEE Trans. on Fuzzy Systems, 14 (2006), pp. 676-697
[Gentil, 2006]
S. Gentil.
Artificial Intelligence for Industrial Process Supervisión.
Lecture Notes in Computer Science, 4031 (2006), pp. 2
[Gevers, 2005]
M. Gevers.
Identification for control: From the early achievements to the revival of experiment design.
European Journal of Control, 11 (2005), pp. 335-352
[Giarré et al., 2006]
L. Giarré, D. Bauso, P. Falugi, B. Bamieh.
LPV model identification for gain scheduling control: An application to rotating stall and surge control problem.
Control Engineering Practice, 14 (2006), pp. 351-361
[Guerra et al., 2006]
T.M. Guerra, A. Kruszewski, L. Vermeiren, H. Tirmant.
Conditions of output stabilization for nonlinear models in the Takagi-Sugeno's form.
Fuzzy Sets and Systems, 157 (2006), pp. 1248-1259
[Guerra and Vermeiren, 2004]
T.M. Guerra, L. Vermeiren.
LMI-based relaxed non-quadratic stabilization conditions for nonlinear systems in the takagi-sugeno's form.
Automática, 10 (2004), pp. 823-829
[Haykin, 1994]
S. Haykin.
Neural Networks: A Comprehensive Foundation.
Prentice Hall PTR, (1994),
[Innocenti et al., 2007]
B. Innocenti, B. López, J. Salvi.
A multi-agent architecture with cooperative fuzzy control for a mobile robot.
Robotics and Autonomous Systems, 55 (2007), pp. 881-891
[Johansen, 2000]
T.A. Johansen.
Computation of Lyapunov functions for smooth nonlinear systems using convex optimization.
Automática, 36 (2000), pp. 1617-1626
[Johansson et al., 1999]
M. Johansson, A. Rantzer, K.E. Arzen.
Piecewise quadratic stability of fuzzy systems.
IEEE Trans. Fuzzy Systems, 7 (1999), pp. 713-722
[Khalil, 1996]
H.K. Khalil.
Nonlinear Systems.
Prentice-Hall, (1996),
[Kosko, 1994]
B. Kosko.
Fuzzy systems as universal approximators.
Computers, IEEE Transactions on, 43 (1994), pp. 1329-1333
[Kruszewski et al., 2009]
A. Kruszewski, A. Sala, T.M. Guerra, C.V. Ariño.
A triangulation approach to assymptotically exact conditions for fuzzy summations.
IEEE Trans. on Fuzzy Systems, (2009),
[Kruszewski and Guerra, 2005]
A. Kruszewski, T.M. Guerra.
New Approaches for the Stabilization of Discrete Takagi-Sugeno Fuzzy Models.
44th IEEE Decisión and Control and 2005 European Control Conf., (2005), pp. 3255-3260
[Labiod and Guerra, 2007]
S. Labiod, T.M. Guerra.
Adaptive fuzzy control of a class of SISO nonaffine nonlinear systems.
Fuzzy Sets and Systems, 158 (2007), pp. 1126-1137
[Lam and Leung, 2007]
H.K. Lam, F.H.F. Leung.
Fuzzy controller with stability and performance rules for nonlinear systems.
Fuzzy Sets and Systems, 158 (2007), pp. 147-163
[Lófberg, 2004]
J. Löfberg.
Yalmip : A toolbox for modeling and optimization in MATLAB.
Proceedings of the CACSD Conference,
[Liu and Zhang, 2003a]
X. Liu, Q. Zhang.
Approaches to quadratic stability conditions and H control designs for t-s fuzzy systems.
Fuzzy Systems, IEEE Transactions on, 11 (2003), pp. 830-839
[Liu and Zhang, 2003b]
X. Liu, Q. Zhang.
New approaches to H controller designs based on fuzzy observers for T-S fuzzy systems via LMI.
Automática, 39 (2003), pp. 1571-1582
[Lo and Lin, 2004]
J.C. Lo, M.L. Lin.
Observer-based robust H control for fuzzy systems using two-step procedure.
Fuzzy Systems, IEEE Transactions on, 12 (2004), pp. 350-359
[Macián et al., 2006]
V. Macián, B.V. Tormos, A. Sala, J.C. Ramírez.
Fuzzy Logic-Based Expert System For Diesel Engine Oil Analysis Diagnosis.
Insight, 48 (2006), pp. A10-A62
[Murty and Kabadi, 1987]
K.G. Murty, S.N. Kabadi.
Some NP-complete pro- blems in quadratic and nonlinear programming.
Mathema- tical programming, 39 (1987), pp. 117-129
[Pedrycz, 1993]
W. Pedrycz.
Fuzzy Control and Fuzzy Systems.
John Wiley & Sons, Inc., (1993),
[Ruusunen and Leiviská, 2004]
M. Ruusunen, K. Leiviská.
Fuzzy modelling of carbón dioxide in a burning process.
Control Engineering Practice, 12 (2004), pp. 607-614
[Sala, 2008]
A. Sala.
Encoding Fuzzy Possibilistic Diagnostics As A Constrained Optimisation Problem.
Information Sciences, 178 (2008), pp. 4246-4263
[Sala et al., 2004]
A. Sala, J.L. Diez, J.L. Navarro, P. Albertos.
Fuzzy model usage and readability in identiflcation for control.
Proceedings of World Automation Congress’04.Vol. 16. IEEE,
[Sala et al., 2005]
A. Sala, T.M. Guerra, R. Babuska.
Perspectives of fuzzy systems and control.
Fuzzy Sets and Systems, 156 (2005), pp. 432-444
[Sala and Esparza, 2003]
A. Sala, A. Esparza.
Reduced-order controller design via iterative identiflcation and control.
European journal of contwl, 9 (2003), pp. 105-117
[Sala and Ariño, 2006]
A. Sala, C. Ariño.
Local Stability of Open-and Closed-loop Fuzzy Systems.
IEEE International Symposium on Intelligent Control, ISIC’06, (2006), pp. 2384-2389
[Sala and Ariño, 2007a]
A. Sala, C. Ariño.
Assymptotically necessary and sufflcient conditions for stability and performance in fuzzy control: Applications of Polya's theorem.
Fuzzy Sets and Systems, 158 (2007), pp. 2671-2686
[Sala and Ariño, 2007b]
A. Sala, C. Ariño.
Relaxed stability and performance conditions for takagi-sugeno fuzzy systems with knowledge on membership function overlap.
IEEE Trans. SMC(B), 37 (2007), pp. 727-732
[Sala and Ariño, 2008]
A. Sala, C.V. Ariño.
Relaxed stability and performance LMI conditions for Takagi-Sugeno fuzzy systems with poly- nomial constraints on membership shape.
IEEE Trans. Fuzzy Systems, 16 (2008), pp. 1328-1336
[Sala and Albertos, 1998]
A. Sala, P. Albertos.
Fuzzy systems evaluation: The inference error approach.
Systems, Man and Cybernetics, Part B, IEEE Transactions on, 28 (1998), pp. 268-275
[Sala and Albertos, 2001]
A. Sala, P. Albertos.
Inference error minimisation: fuzzy modelling of ambiguous functions.
Fuzzy Sets and Systems, 121 (2001), pp. 95-111
[Schulte and Hahn, 2004]
H. Schulte, H. Hahn.
Fuzzy state feedback gain scheduling control of servo-pneumatic actuators.
Control Engineering Practice, 12 (2004), pp. 639-650
[Slotine and Weiping, 1991]
Jean-Jaques E. Slotine, Li Weiping.
Applied Nonlinear Control.
Prentice Hall, (1991),
[Sugeno, 1985]
M. Sugeno.
Industrial Applications of Fuzzy Control.
Elsevier Science Inc, (1985),
[Takagi and Sugeno, 1985]
T. Takagi, M. Sugeno.
Fuzzy identiflcation of systems and its applications to modelling and control.
IEEE Trans. on Systems, Man and Cybernetics, 15 (1985), pp. 116-132
[Tanaka et al., 2003a]
K. Tanaka, T. Hori, H.O. Wang.
A múltiple Lyapunov function approach to stabilization of fuzzy control systems.
Fuzzy Systems, IEEE Transactions on, 11 (2003), pp. 582-589
[Tanaka et al., 2003b]
K. Tanaka, T. Hori, H.O. Wang.
A múltiple lyapunov function approach to stabilization of fuzzy control systems.
IEEE Transactions on Fuzzy Systems, 6 (2003), pp. 250-265
[Tanaka and Wang, 2001]
K. Tanaka, H.O. Wang.
Fuzzy control systems design and analysis.
John Wiley & Sons, (2001),
[Tuan et al., 2001]
H.D. Tuan, P. Apkarian, T. Ñarikiyo, Y. Yamamoto.
Parameterized linear matrix inequality techniques in fuzzy control system design.
IEEE Trans. Fuzzy Systems, 9 (2001), pp. 324-332
[Wang, 1994]
L.-X. Wang.
Adaptive Fuzzy Systems and Control: Design and Stability Analysis.
Prentice-Hall, (1994),
[Zadeh, 1973]
L.A. Zadeh.
Outline of a new approach to the analysis of complex systems and decision processes, 3 (1973), pp. 28-44
Copyright © 2009. Elsevier España, S.L.. Todos los derechos reservados
Descargar PDF
Opciones de artículo