En este artículo se extiende el análisis de la Matriz de Participación, como herramienta para cuantiflcar la interacción en sistemas multivariables y para seleccionar, acorde con esa cuantiflcación, la estructura de los controladores. La extensión del análisis se realiza en los dominios del tiempo y de la frecuencia, a través de la conexión existente entre la definición de la Matriz de Participación y la norma Hilbert-Schmidt-Hankel. Esta conexión permite además estimar la matriz mediante métodos de identificación que utilizan datos experimentales de entrada y salida del sistema multivariable.
Información de la revista
Vol. 6. Núm. 2.
Páginas 17-25 (abril 2009)
Vol. 6. Núm. 2.
Páginas 17-25 (abril 2009)
Open Access
Una medida de interacción multivariable en el dominio del tiempo y de la frecuencia
Visitas
3465
Mario E. Salgado, Juan I. Yuz
Departamento de Electrónica, Universidad Técnica Federico Santa María, Valparaíso, Chile
Este artículo ha recibido
Información del artículo
Resumen
Palabras clave:
Control multivariable
Control descentralizado
Controlabilidad
Observabilidad
Normas
El Texto completo está disponible en PDF
Referencias
[Allemandou, 1966]
P. Allemandou.
Low-pass fllters approximating - in modulus and phase - the exponential function.
IEEE Transactions on Circuit Theory, 13 (1966), pp. 298-301
[Bristol, 1978]
E.H. Bristol.
Recent results on interaction in multivanable process control.
71° AIChE Conference,
[Bristol, 1966]
E.H. Bristol.
On a new measure of interaction for multivariable process control.
Automática, (1966), pp. 123-134
[Chiu and Yaman, 1991]
Min-Sen Chiu, Arkun Yaman.
A new result on relative gain array, Niederlinski index and decentralized stability condition: 2×2 plant case.
Automática, 27 (1991), pp. 121-419
[Gagnon et al., 1999]
Eric Gagnon, Desbiens André, Pomerleau André.
Selection of pairing and constrained robust decentralized PI controllers.
American Control Conference,
[Glad and Ljung, 2000]
T. Glad, L. Ljung.
Control Theory. Multivariable and Nonlinear Methods.
Taylor and Francis, (2000),
[Glover, 1984]
K. Glover.
All optimal hankel norm approximations of linear multivariable systems and their l∞-error bound.
International Journal of Control, 39 (1984), pp. 1115-1193
[Goodwin et al., 2001]
G.C. Goodwin, S.F. Graebe, M.E. Salgado.
Control System Design.
Prentice Hall, (2001),
[Grosdidier and Morari, 1986]
P. Grosdidier, M. Morari.
Interaction measures for systems under decentralized control.
Automática, 22 (1986), pp. 309-319
[Hanzon, 1992]
B. Hanzon.
The área enclosed by the (oriented) Nyquist diagram and the Hilbert-Schmidt-Hankel norm of a linear system.
IEEE Transactions on Automatic Control, 37 (1992), pp. 835-839
[He et al., 2006]
M.J. He, W.J. Cai, B.F. Wu.
Control structure selection based on relative interaction decomposition.
International Journal of Control, 79 (2006), pp. 1285-1296
[Huang et al., 1994]
H.-P. Huang, M. Ohshima, I. Hashimoto.
Dynamic interaction and multiloop control system design.
Journal of Process Control, 4 (1994), pp. 15-27
[Kariwala and Hovd, 2006]
V. Kariwala, M. Hovd.
Relative Gain Anay: Common misconceptions and clariflcations.
7th Symposium on Computer Process Control,
[Kwakernaak and Sivan, 1972]
H. Kwakernaak, R. Sivan.
Linear Optimal Control Systems.
Wiley-Interscience, (1972),
[Ljung, 1999]
L. Ljung.
System Identification. Theory for the User.
2nd, Prentice Hall, (1999),
[Maciejowski, 1989]
J.M. Maciejowski.
Multivariable Feedback Design.
Addison Wesley, (1989),
[Moheimani and Vautier, 2005]
S.O.R. Moheimani, B.J.G. Vautier.
Resonant control of structural vibration using charge-driven piezoelectric actuators.
Control Systems Technology, IEEE Transactions on, 13 (2005), pp. 1021-1035
[Niederlinski, 1971]
Antoni Niederlinski.
A heuristic approach to the design of linear multivariable interacting control systems.
Automática, 7 (1971), pp. 691-701
[Salgado, 2006]
M.E. Salgado.
Inversión, un concepto uniflcador en la enseñanza del control automático.
Revista Iberoamericana de Automática e Informática Industrial, 3 (2006), pp. 5-15
[Salgado and Conley, 2004]
M.E. Salgado, A. Conley.
MIMO interaction measure and controller structure selection.
International Journal of Control, 77 (2004), pp. 367-383
[Salgado and Rojas, 2005]
M.E. Salgado, D. Rojas.
MIMO interactions in sam-pled data systems.
16th IFAC World Congress,
[Salgado and Yuz, 2007]
M.E. Salgado, J.I. Yuz.
Mixed domain analysis of MIMO dynamic interactions.
IEEE International Con-ference On Networking, Sensing and Control - ICNSC07,
[Samuelsson et al., 2005]
R. Samuelsson, B. Halvarsson, B. Carlsson.
Interaction analysis and control structure selection in a wastewater treat-ment plant model.
IEEE Transactions On Control Systems Technology, 13 (2005), pp. 955-964
[Serón et al., 1997]
M.M. Serón, J.H. Braslavsky, G.C. Goodwin.
Fundamental Limitations in Filtering and Control.
Springer, (1997),
[Skogestad and Morari, 1987]
S. Skogestad, M. Morari.
Implications of large RGA elements on control performance.
Industrial Engineering in Chemical Research, 26 (1987), pp. 2323-2330
[van de Wal and de Jager, 2001]
M. van de Wal, B. de Jager.
A review of methods for input/output selection.
Automática, 37 (2001), pp. 487-510
[Weinmann, 2007]
A. Weinmann.
Robustness and dynamic interaction.
Cybernetics and Systems, 38 (2007), pp. 229-248
[Witcher and McAvoy, 1977]
M.F. Witcher, T.J. McAvoy.
Interacting control systems: Steady-state and dynamic measurement of interaction.
ISA Transactions, 16 (1977), pp. 35-41
[Wittenmark and Salgado, 2002]
B. Wittenmark, M.E. Salgado.
Hankel norm based interaction measure for input-output pairing.
15th IFAC World Congress Conference Proceedings,
[Zhou et al., 1999]
K. Zhou, G. Salomon, E. Wu.
Balanced realization and model reduction for unstable systems.
International Journal ofRobust andNonlinear Control, 9 (1999), pp. 183-198
[Zhu, 1996]
Zhong-Xiang Zhu.
Variable pairing selection based on individual and overall interaction measures.
Industrial Engineering in Chemical Research, 35 (1996), pp. 4091-4099
Copyright © 2009. Elsevier España, S.L.. Todos los derechos reservados