covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Simulación basada en SMA de sistemas originalmente representados con EDO
Información de la revista
Vol. 8. Núm. 4.
Páginas 323-333 (octubre - diciembre 2011)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 8. Núm. 4.
Páginas 323-333 (octubre - diciembre 2011)
Open Access
Simulación basada en SMA de sistemas originalmente representados con EDO
Visitas
4808
Ekaitz Zulueta Guerreroa,
Autor para correspondencia
ekaitz.zulueta@ehu.es

Autor para correspondencia.
, Asier Gonzáez Gonzáezb, Jose Manuel Lopez-Guedea, Isidro Calvo Gordilloa
a Departamento de Ingeniería de Sistemas y Automática, E.U. Ingeniería de Vitoria-Gasteiz, C/Nieves Cano, n°12, 01006, Vitoria-Gasteiz, España
b Tecnalia Research & Innovation, Parque Tecnológico de Álava, C/ Albert Einstein, na28, 01510, Miñano (Álava), España
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas
Resumen

En el presente trabajo se expone una metodología para modelar mediante un Sistema Multi-Agente (SMA) sistemas biológicos y fisiológicos dinámicos con variables cuantificadas discretas, como el crecimiento y decrecimiento de poblaciones o el modelado epidemiológico de enfermedades. Se muestra un procedimiento para transformar un sistema de Ecuaciones Diferenciales Ordinarias (EDO) (que modela un entorno de forma correcta) en un SMA equivalente mediante un esquema basado en el método de Monte Carlo. Se utiliza un caso práctico fundamentado en un modelo matemático de Leucemia Mieloide Crónica (LMC) para comparar la metodología basada en agentes con el modelado tradicional basado en un sistema de EDO. Se realiza una simulación con cada modelo (SMA y EDO) y se compara los resultados obtenidos con ambas metodologías.

Palabras clave:
Ecuaciones diferenciales
modelo basado en agentes
Monte Carlo
El Texto completo está disponible en PDF
Referencias
[Agarwal y O’Regan, 2008]
R.P. Agarwal, D. O’Regan.
Existence and Uniqueness of Solutions of Systems. An introduction to ordinary differential equations.
Springer, (2008),
[Banerjee y Moses, 2009]
S. Banerjee, M. Moses.
A Hybrid Agent Based and Differential Equation Model of Body Size Effects on Pathogen Replication and Immune System Response.
Lecture Notes in Computer Science, 5666 (2009), pp. 14-18
[Basse y Ubezio, 2007]
B. Basse, P. Ubezio.
A Generalised Age- and Phase-Structured Model of Human Tumour Cell Populations Both Unperturbed and Exposed to a Range of Cancer Therapies.
Bulletin of Mathematical Biology, 69 (2007), pp. 1673-1690
[Benjamin et al., 2008]
R. Benjamin, G. Jean-Francois, B. Francois.
Multi-agent systems in epidemiology: a first step for computational biology in the study of vector-borne disease transmission.
[Brauer y Chavez, 2001]
F. Brauer, C.C. Chavez.
Mathematical Models in Population Biology and Epidemiology.
Springer-Verlag, (2001),
[Bunimovich-Mendrazitsky et al., 2008]
S. Bunimovich-Mendrazitsky, H. Byrne, L. Stone.
Mathematical Model of Pulsed Immunotherapy for Superficial Bladder Cancer.
Bulletin of Mathematical Biology, 70 (2008), pp. 2055-2076
[Ferber, 1999]
J. Ferber.
Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence.
Addison-Wesley Professional, (1999),
[Fianyo et al., 1998]
E. Fianyo, J.P. Treuil1, E. Perrier, Y. Demazeau.
Multi-agent Architecture Integrating Heterogeneous Models of Dynamical Processes: The Representation of Time.
Lecture Notes in Computer Science, 1534 (1998), pp. 226-236
[Fishman, 1996]
G. Fishman.
Monte Carlo: Concepts, algorithms, and applications.
Springer-Verlag, (1996),
[Guanglai et al., 2008]
L. Guanglai, T. Lick-Kong, X.T. Jay.
Amplified effect of Brownian motion in bacterial near-surface swimming.
Proceedings of the National Academy of Sciences of the United States of America, 105 (2008),
[Guo et al., 2008]
Z.Y. Guo, P.M.A. Sloot, J.C. Tay.
A hybrid agent-based approach for modeling microbiological systems.
Journal of Theoretical Biology, 255 (2008), pp. 163-175
[Horne et al., 2007]
J.S. Horne, E.O. Garton, S.M. Krone, J.S. Lewis.
Analyzing animal movements using Brownian bridges.
Proceedings of the National Academy of Sciences of the United States of America, 88 (2007), pp. 2354-2363
[Lewis y Pulè, 1975]
J.T. Lewis, J.V. Pulè.
Dynamical theories of Brownian motion.
Lecture Notes in Physics, Springer Berlin /Heidelberg, 39 (1975), pp. 294-296
[Milton y Arnold, 2004]
J.S. Milton, J.C. Arnold.
Distribuciones continuas. Probabilidad y Estadítica con aplicaciones para ingeniería y ciencias computacionales.
Mcgraw-Hill, (2004),
[Moore y Li, 2004]
H. Moore, N.K. Li.
A mathematical model for chronic myelogenous leukemia (CML) and T cell interaction.
Journal of Theoretical Biology, 227 (2004), pp. 513-523
[Murray, 2002a]
Murray J. D., 2002a. Models for Interacting Populations. Mathematical biology. Springer New York, 17, pp. 79-118.
[Murray, 2002b]
Murray J. D., 2002b. Dynamics of Infectious Diseases: Epidemic Models and AIDS. Mathematical biology, Springer New York, 17, pp. 315-394.
[Nagy, 2004]
J.D. Nagy.
Competition and natural selection in a mathematical model of cancer.
Bulletin of Mathematical Biology, 66 (2004), pp. 663-687
[Øsendal, 2003]
B. Øsendal.
Stochastic differential equations: an introduction with applications.
Springer-Verlag, (2003),
[Parunak y Brueckner, 2009]
H.V.D. Parunak, S.A. Brueckner.
Polyagents: Simulation for Supporting Agents’ Decision Making. Multi-Agent Systems: Simulation and Applications.
CRC Press, (2009),
[Pavó Morán et al., 2005]
V. Pavó Morán, P. Hernádez Ramíez, G. Martíez Antuñ, O. Agramonte Llanes, J.C. Jaime Fagundo, J. Bravo Regueiro.
Leucemia mieloide cróica: Actualización en Citogenéica y Biología Molecular. Revista Cubana de Hematología.
Inmunología y Hemoterapia, 21 (2005),
[Redou et al., 2005]
P. Redou, S. Kerdelo, G.C. Le, G. Querrec, V. Rodin, J.F. Abgrall, J. Tisseau.
Reaction-agents: First mathematical validation of a multi-agent system for dynamical biochemical kinetics.
Lecture Notes in Computer Science, Springer Berlin/Heidelberg, 3808 (2005), pp. 156-166
[Shonkwiler y Herod, 2009]
R.W. Shonkwiler, J. Herod.
Mathematical Biology: An Introduction with Maple and Matlab.
Springer-Verlag, (2009),
[Spencer et al., 2004]
S.L. Spencer, M.J. Berryman, J.A. García, D. Abbott.
An ordinary differential equation model for the multistep transformation to cancer.
Journal of Theoretical Biology, 231 (2004), pp. 515-524
[Szymańska et al., 2009]
Z. Szymańska, J. Urbański, A. Marciniak-Czochra.
Mathematical modelling of the influence of heat shock proteins on cancer invasion of tissue.
Journal of Mathematical Biology, 58 (2009), pp. 819-844
[Van Den Berg, 2011]
H. Van Den Berg.
Mathematical Biology of biological systems.
Oxford University Press, (2011),
[Weyns et al., 2006]
D. Weyns, K. Schelfthout, T. Holvoet.
Exploiting a Virtual Environment in a Real-World Application.
Lecture notes in artificial intelligence, 3830 (2006), pp. 218-234
[Weyns et al., 2005]
D. Weyns, H.V. Parunak, F. Michel, T. Holvoet, J.D. Ferber.
Environments for Multiagent Systems State-of-the-Art and Research Challenges.
Lecture Notes in Computer Science, 3374 (2005), pp. 1-47
[Wodarz y Komarova, 2005]
D. Wodarz, N.L. Komarova.
Mathematical modeling of tumorigenesis. Computational Biology Of Cancer: Lecture Notes And Mathematical Modeling.
World Scientific Publishing Company, (2005),
[Wooldridge, 2002]
M.J. Wooldridge.
Introduction to MultiAgent Systems.
John Wiley & Sons, (2002),
[Wu et al., 2005]
D. Wu, J. Zhou, Y. Li.
Unbiased estimation of Weibull parameters with the linear regression method.
Journal of the European Ceramic Society, 26 (2005), pp. 1099-1105
Descargar PDF
Opciones de artículo