La síntesis de mecanismos planos representa un problema atractivo para ser resuelto mediante técnicas de computación evolutiva, ya que plantea un sistema indeterminado de ecuaciones no lineales cuyo tamaño es directamente dependiente del número de puntos de precisión definidos para describir la trayectoria deseada del acoplador. Este artículo presenta la optimización en el proceso de síntesis de mecanismos basado en algoritmos genéticos (AG) para el caso de un mecanismo plano de seis barras tipo Watt utilizado como base para el diseño de una prótesis policéntrica de rodilla. La trayectoria deseada a ser descrita por el acoplador corresponde a la descrita por la rodilla durante un ciclo normal de marcha. La metodología propuesta ilustra claramente como, por la aplicación de AG's, la trayectoria generada evoluciona de manera natural desde una solución errática hasta una curva que se ajusta suavemente a la trayectoria deseada.
Información de la revista
Vol. 8. Núm. 2.
Páginas 45-51 (abril 2011)
Vol. 8. Núm. 2.
Páginas 45-51 (abril 2011)
Open Access
Síntesis Genética de Mecanismos para Aplicaciones en Prótesis de Miembro Inferior
Visitas
5964
E.A. Merchán-Cruz
, E. Lugo-González**, J. Ramírez-Gordillo
, R.G. Rodríguez-Cañizo*, J. Sandoval-Pineda*, L.H. Hernández-Gómez**
* Escuela Superior de Ingeniería Mecánica y Eléctrica Instituto Politécnico Nacional, Unidad Azcapotzalco, Av. de las Granjas #682, Col. Sta. Catarina México D.F., México, C.P. 02250
** Escuela Superior de Ingeniería Mecánica y Eléctrica Instituto Politécnico Nacional, Unidad Zacatenco, Av. IPN s/n, Col. Lindavista México D.F., México, C.P. 07140
Este artículo ha recibido
Información del artículo
Resumen
Palabras clave:
Síntesis de Mecanismos
Algoritmos Genéticos
Computación Evolutiva
Mecanismos Planos
Prótesis
Miembro Inferior
El Texto completo está disponible en PDF
References
[Affi et al., 2007]
Z. Affi, B. EL-Kribi, et al.
Advanced mechatronic design using a multi-objective genetic algorithm optimization of a motor-driven four-bar system.
Mechatronics, 17 (2007), pp. 489-500
[Blumentritt and Werner-Scherer, 1997]
Blumentritt, S. and H. Werner-Scherer (1997). Design principles, biomechanical data and clinical experiene with a polycentric knee offering controlled stance phase knee flexión.A preliminary report Washington D.C.
[Cabrera et al., 2007]
J.A. Cabrera, F. Nadal, et al.
Multiobjective constrained optimal synthesis of planar mechanisms using a new evolutionary algorithm.
Mechanism and machine theory, 42 (2007), pp. 791-806
[Cabrera et al., 2002]
J.A Cabrera, A. Simón, et al.
Optimal synthesis of mechanisms with genetic algorithms.
Mechanism and machine theory, 37 (2002), pp. 1165-1177
[Campos-Padilla, 2009]
Campos-Padilla, I.Y (2009). Diseño de un mecanismo policéntrico para prótesis de rodilla. Mechanical Engineering Dept. México, Instituto Politécnico Nacional. M. Sc.: 108.
[Denavit and Hartenberg, 1964]
J. Denavit, R.S. Hartenberg.
Kinematic Synthesis of Linkages.
Mc. Graw Hill, (1964),
[Diab and Smaili, 2008]
N. Diab, A. Smaili.
Optimum exact/approximate point synthesis of planar mechanisms.
Mechanism and Machine Theory, 43 (2008), pp. 1610-1624
[Freudenstein, 1954]
F. Freudenstein.
An analitical approach to the design of four link mechanism.
Transactions of the ASME, 76 (1954), pp. 483-492
[Freya et al., 2006]
M. Freya, R. Rienera, et al.
Elastic properties of an intact and ACL-ruptured knee joint: Measurement, mathematical modelling, and haptic rendering.
Journal of biomechanics, 39 (2006), pp. 1371-1382
[Measurement, inpress]
Measurement, mathematical modelling, and haptic rendering.” Journal of biomechanics 39: 1371-1382.
[Goldberg, 1989]
D.E Goldberg.
Genetic algorithms in search, optimization and machine learning.
Addison - Wesley, (1989),
[Gunston et al., 1971]
F.-H. Gunston, Winnipeg, et al.
Polycentric Knee Arthroplashy. Prosthetic Simulation of Normal Knee Movement.
The Journal of Bone and Joint Surgery, 53B (1971), pp. 272-277
[Hobson and Torfason, 1974]
D.A. Hobson, L.E. Torfason.
optimization of fourbar knee mechanisms-a computarized approach.
Journal of Biomechanics, 7 (1974), pp. 371-376
[Hobson and Torfason, 1975]
D.A. Hobson, L.E. Torfason.
Computer optimization of polycentric prosthetic knee mechanisms.
Bulletin of Prosthetic Research, 10 (1975), pp. 187-201
[Jin et al., 2003]
D. Jin, R. Zhang, et al.
Kinematic and dynamic performance of prosthetic knee joint using six-bar mechanism.
Journal of Rehabilitation Research and Development, 40 (2003), pp. 39-48
[Kalnas and Kota, 2001]
R. Kalnas, S. Kota.
Incorporating Uncertaintly into Mechanism Synthesis.
Mechanism and machine theory (Mech. mach theory), 36 (2001), pp. 843-851
[Kunjur and Krishnamurty, 1997]
A. Kunjur, S. Krishnamurty.
Genetic Algorithms in Mechanism Synthesis.
Journal of Applied Mechanisms and Robotics, 4 (1997), pp. 18-24
[Laribi et al., 2004]
M.A. Laribi, A. Mlika, et al.
A combined genetic algorithm–fuzzy logic method (GA–FL) in mechanisms synthesis.
Mechanism and Machine Theory, 39 (2004), pp. 717-735
[Levitski and Shakvazian, 1960]
N.L Levitski, K.K. Shakvazian.
Synthesis of fourelement spatial mechanisms with lower pairs.
International Journal of Mechanical Sciences, 2 (1960), pp. 76-92
[Mallik et al., 1994]
A.K. Mallik, A. Ghosh, et al.
Kinematic Analysis and Synthesis of Mechanisms.
1 edition, CRC-Press, (1994),
[Michalewicz, 1999]
Z. Michalewicz.
Genetic Algorithms + Data Structure = Evolution Programs.
Springer, (1999),
[Moreno-Pérez, 2006]
R. Moreno-Pérez.
Análisis de Mecanismos y Problemas Resueltos.
Alfaomega, (2006),
[Nariman-Zadeh et al., 2009]
N. Nariman-Zadeh, M. Felezi, et al.
Pareto optimal synthesis of four-bar mechanisms for path generation.
Mechanism and Machine Theory, 44 (2009), pp. 180-191
[Quintero et al., 2004]
H. Quintero-R, G. Calle-Trujillo, et al.
Síntesis de generación de trayectorias y de movimiento para múltiples posiciones en mecanismos, utilizando algoritmos genéticos.
Scientia et Technica, 10 (2004),
[R.-Bulatovic, Djordjevic, 2004]
R. R.-Bulatovic, S.R. Djordjevic.
Optimal Synthesis of a Four-Bar Linkage by Method of Controlled Deviation.
The first international conference on computational mechanics (CM’04), pp. 265-280
[Radcliffe, 1977]
Radcliffe, C. (1977). The knud Jansen lecture:above-knee mechanisms: kinematics, alignment and prescription criteria. University of California, Berkeley. D. o. M. Engineering. U.S.A., Prosthetic and orthetic practice: 1:3:146-60.
[Radcliffe, 1994]
C. Radcliffe.
Four-bar linkage knee mechanism: kinematics, alignment and prescription criteria.
Prosthetic and Orthotics International, 18 (1994), pp. 159-173
[Radcliffe, 1970]
Radcliffe, C. W. (1970). “Prosthetic-knee mechanism for above-knee amputees In: Murdoch” G. (ED), Prosthetic and orthotic practice: 225–49.
[Roston and Sturges, 1996]
G.P. Roston, R.H. Sturges.
Genetic Algorithm Synthesis of Four-bar Mechanisms.
Artificial Intelligence for Engineering Design,Analysis and Manufacturing, 10 (1996), pp. 371-390
[Starosta, 2006]
R. Starosta.
On some application of genetic algorithm in mechanism synthesis.
Annual Meeting of GAMM,
[Tzong-Mou and Cha’o-Kuang, 2005]
W. Tzong-Mou, C. Cha’o-Kuang.
Mathematical model and its simulation of exactly mechanism synthesis with adjustable link.
Applied Mathematics and Computation, 160 (2005), pp. 309-316
[Varbanov et al., 2006]
H. Varbanov, T. Yankova, et al.
S&A-Expert system for planar mechanism design.
Expert Systems with Applications, 31 (2006), pp. 558-569
[Vasiliu and Yannou, 2001]
A. Vasiliu, B. Yannou.
Dimensional Synthesis of planar Mechanism Using Neural Network: Application to path generator linkages.
Mechanism and machine theory (Mech. mach. theory), 36 (2001), pp. 229-310
[Walczak, 2006]
T. Walczak.
Mechanism synthesis with the use of neural network.
Annual Meeting of GAMM, pp. 77
Copyright © 2011. Elsevier España, S.L.. All rights reserved