covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Una Revisión de Técnicas de Optimización Heurística para el Diseño de Traye...
Información de la revista
Vol. 14. Núm. 1.
Páginas 1-15 (enero - marzo 2017)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
2703
Vol. 14. Núm. 1.
Páginas 1-15 (enero - marzo 2017)
Open Access
Una Revisión de Técnicas de Optimización Heurística para el Diseño de Trayectorias Interplanetarias en Misiones Espaciales
Heuristic Optimization of Interplanetary Trajectories in Aerospace Missions
Visitas
2703
F. Alonso Zotesa, M. Santos Peñasb,
Autor para correspondencia
msantos@ucm.es

Autor para correspondencia.
a Flight Dynamics Software Consultant, Terma GmbH, Europaplatz 5, 64293, Darmstadt, Alemania
b Departamento de Arquitectura de Computadores y Automática, Universidad Complutense de Madrid, Profesor García Santesmases 9, 28040, Madrid, España
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

En este trabajo se presenta la optimización heurística como una metodología que permite automatizar el diseño de las rutas interplanetarias con asistencias gravitacionales para conseguir una mayor rentabilidad, en términos científicos, de las exploraciones espaciales. Se trata de un problema de optimización multiobjetivo donde se busca un compromiso entre la minimización de la masa destinada a combustible y la maximización de la carga útil y científica de la misión aeroespacial. Las técnicas de optimización evolutiva han sido aplicadas con éxito a estos problemas de diseño de trayectorias complejas. Se incluye una revisión de algunas de las principales técnicas de optimización heurística que se han utilizado en el ámbito aeroespacial: GA (Genetic Algorithms), PSO (Particle Swarm Optimization) y MOPSO (Multiobjective particle swarm optimization), en concreto para el diseño de misiones de exploración interplanetaria con asistencias gravitacionales, realizadas por numerosos autores. Finalmente se presenta a modo de ejemplo una aplicación concreta de optimización multiobjetivo mediante MOPSO para determinar una trayectoria interplanetaria desde la Tierra con asistencias al cinturón de Kuiper.

Palabras clave:
Optimización heurística
trayectorias interplanetarias
asistencias gravitacionales
aplicaciones aeroespaciales
GA
PSO
MOPSO
Abstract

In this paper, heuristic optimization of interplanetary trajectories is presented. These techniques have been applied over the last two decades to the successful design of space missions in order to increase the scientific results. The multi-objective optimization problem has been solved finding a trade-off between minimizing the fuel and maximizing the useful payload of the scientific mission. A review of the literature related to the application of some evolutive strategies such as Genetic Algorithms and Differential Evolution, and Particle Swarm Optimization methods, to aerospace applications is included, in particular for the design of interplanetary exploration missions with gravity assistances. A detailed example is included to show the application of multiobjetive optimization (MOPSO) to determine the interplanetary trajectory from the Earth to the Kuiper Belt with flybys in Mars, Jupiter and Saturn.

Keywords:
Heuristic optimization
interplanetary trajectories
gravity assistance
fly-by
aerospace mission
GA
PSO
MOPSO
Referencias
[Alonso and Santos, 2008]
F. Alonso, M. Santos.
GA Optimization of the height of a low earth orbit.
En: Computational Intelligence in Decision and Control, World Scientific, (2008), pp. 719-724
[Alonso and Santos, 2010a]
F. Alonso, M. Santos.
Multi-criteria Genetic Optimisation of the Manoeuvres of a Two-Stage Launcher.
Information Sciences, 180 (2010 a), pp. 896-910
[Alonso and Santos, 2010b]
F. Alonso, M. Santos.
Delta-V genetic optimisation of a trajectory from Earth to Saturn with fly-by in Mars.
IEEE Congress on, (2010 b), pp. 1-6
[Alonso and Santos, 2010c]
F. Alonso, M. Santos.
Genetic Optimization of an Interplanetary Trajectory from Earth to Jupiter.
2-4 August 2010
[Alonso-Zotes and Santos-Peñas, 2010d]
F. Alonso-Zotes, M. Santos-Peñas.
From Earth to Kuiper belt: swarm optimisation algorithm applied to interplanetary missions.
En: Proceedings of the WPP-308, 4th International Conference on Astrodynamics Tools and Techniques ICATT, (2010 d), pp. 3-6
[Alonso Zotes and Santos Peñas, 2012]
F. Alonso Zotes, M. Santos Peñas.
Particle swarm optimisation of interplanetary trajectories from Earth to Jupiter and Saturn.
Engineering Applications of Artificial Intelligence, 25 (2012), pp. 189-199
[Armellin et al., 2012]
R. Armellin, P. Di Lizia, K. Makino, M. Berz.
Rigorous global optimization of impulsive planet-to-planet transfers in the patched-conics approximation.
Engineering Optimization, 44 (2012), pp. 133-155
[Bate et al., 1971]
R.R. Bate, D.D. Mueller, J.E. White.
Fundamentals Astrodynamics.
Dover Publications, (1971),
[Campagnola et al., 2014]
S. Campagnola, B.B. Buffington, A.E. Petropoulos.
Jovian tour design for orbiter and lander missions to Europa.
Acta Astronautica, 100 (2014), pp. 68-81
[Choueiri, 2009]
E.Y. Choueiri.
New Dawn for Electric Rockets.
Scientific American, 300 (2009), pp. 58-65
[Dachwald, 2005]
B. Dachwald.
Optimization of very-low-thrust trajectories using evolutionary neurocontrol.
Acta Astronautica, 57 (2005), pp. 175-185
[Das and Suganthan, 2011]
S. Das, P.N. Suganthan.
Differential evolution: a survey of the stateof-the-art.
Evolutionary Computation, IEEE Transactions on, 15 (2011), pp. 4-31
[Deb, 2014]
K. Deb.
Multi-objective optimization.
In Search methodologies, Springer US, (2014), pp. 403-449
[Eberhart and Shi, 1998]
R.C. Eberhart, Y. Shi.
Comparison between genetic algorithms and particle swarm optimization.
En: Evolutionary Programming VII, Springer Berlin Heidelberg, (1998), pp. 611-616
[Fonseca and Fleming, 1998]
C.M. Fonseca, P.J. Fleming.
Multiobjective optimization and multiple constraints handling with evolutionary algorithms-part I: A unified formulation.
Systems, Man and Cybernetics, Part A, IEEE Transactions on, 28 (1998), pp. 26-37
[Goldberg, 1989]
D.E. Goldberg.
Genetic algorithms in search, optimizacion and machine learning.
Adisson-Wesley, (1989),
[Hill and Peterson, 1992]
P.G. Hill, C.R. Peterson.
Mechanics and thermodynamics of propulsion.
2nd edition, Addison-Wesley Publishing Co, (1992),
[Hu and Eberhart, 2002]
X. Hu, R.C. Eberhart.
Multiobjective Optimization using Dynamic Neighborhood Particle Swarm Optimization.
En: WCCI, Congress on Evolutionary Computation, IEEE, (2002), pp. 1677-1681
[Izzo, 2006]
D. Izzo.
Lambert's problem for exponential sinusoids.
Journal of guidance, control, and dynamics, 29 (2006), pp. 1242-1245
[Izzo et al., 2007]
D. Izzo, V.M. Becerra, D.R. Myatt, S.J. Nasuto, J.M. Bishop.
Search space pruning and global optimisation of multiple gravity assist spacecraft trajectories.
Journal of Global Optimization, 38 (2007), pp. 283-296
[Izzo et al., 2013]
D. Izzo, L.F. Simões, M. Märtens, G.C. de Croon, A. Heritier, C.H. Yam.
Search for a grand tour of the Jupiter Galilean moons.
In Proc. 15th Annual Conference on Genetic and Evolutionary Computation, ACM, (2013), pp. 1301-1308
[Izzo, 2010]
D. Izzo.
Global optimization and space pruning for spacecraft trajectory design.
pp. 178-200
[JAXA, 2016]
JAXA, 2016. Japan Aerospace Exploration Agency. http://global.jaxa.jp/projects/sat/ikaros/
[Johnson et al., 2010]
Johnson, L., Young, R., Alhorn, D., Heaton, A., Vansant, T., Campbell, B., Pappa, R., Keats, W., Liewer, P.C., Alexander, D., Ayon, J., Wawrzyniak, G., Burton, R., Carroll, D., Matloff, G., Kezerashvili, R.Y., 2010. Solar Sail Propulsion: Enabling New Capabilities for Heliophysics.
[Kennedy and Eberhart, 2001]
J. Kennedy, R.C. Eberhart.
Swarm Intelligence.
Academic Press, (2001),
[Kloster et al., 2011]
K.W. Kloster, A.E. Petropoulos, J.M. Longuski.
Europa Orbiter tour design with Io gravity assists.
Acta Astronautica, 68 (2011), pp. 931-946
[Li, 2004]
X. Li.
Better spread and convergence: Particle swarm multiobjective optimization using the maximin fitness function.
En: Genetic and Evolutionary Computation–GECCO 2004, Springer Berlin Heidelberg, (2004), pp. 117-128
[Lynam, 2014a]
A.E. Lynam.
Broad-search algorithms for the spacecraft trajectory design of Callisto–Ganymede–Io triple flyby sequences from 2024 to 2040.
Part I: Heuristic pruning of the search space. Acta Astronautica, 94 (2014), pp. 246-252
[Lynam, 2014b]
A.E. Lynam.
Broad-search algorithms for the spacecraft trajectory design of Callisto–Ganymede–Io triple flyby sequences from 2024 to 2040. Part II: Lambert pathfinding and trajectory solutions.
Acta Astronautica, 94 (2014), pp. 253-261
[Lynam, 2015]
A.E. Lynam.
Broad-search algorithms for finding triple-and quadruple-satellite-aided captures at Jupiter from 2020 to 2080.
Celestial Mechanics and Dynamical Astronomy, 121 (2015), pp. 347-363
[Macdonald, 2014]
Advances in Solar Sailing.,
[Marín Martín et al., 1992]
F.J. Marín Martín, F. García Lagos, F. Sandoval Hernández.
Algoritmos Genéticos: una estrategia para la búsqueda y la optimización.
Informática y Automática, 25 (1992), pp. 5-15
[Makino, 1998]
K. Makino.
Rigorous analysis of nonlinear motion in particle accelerators.
Doctoral dissertation, Michigan State University, East Lansing, (1998),
[McConaghy et al., 2003]
T.T. McConaghy, T.J. Debban, A.E. Petropoulos, J.M. Longuski.
Design and optimization of low-thrust trajectories with gravity assists.
Journal of spacecraft and rockets, 40 (2003), pp. 380-387
[Minovitch, 1961]
M. Minovitch.
A method for determining interplanetary free-fall reconnaissance trajectories.
Jet Propulsion Laboratory Technical Memo TM-312-130, (1961), pp. 38-44
[NASA, 1998]
NASA, 1998. Deep Space 1. National Aeronautics and Space Administration. http://science.nasa.gov/missions/deep-space-1/
[Ohndorf and Dachwald, 2010]
A. Ohndorf, B. Dachwald.
InTrance -A Tool for Multi-Objective Multi-Phase Low-Thrust Trajectory Optimization. Proceedings of the WPP-308.
4th International Conference on Astrodynamics Tools and Techniques ICATT, (2010),
[Pascale and Vasile, 2006]
P.D. Pascale, M. Vasile.
Preliminary design of low-thrust multiple gravity-assist trajectories.
Journal of Spacecraft and Rockets, 43 (2006), pp. 1065-1076
[Pessina et al., 2003]
S.M. Pessina, S. Campagnola, M. Vasile.
Preliminary analysis of interplanetary trajectories with aerogravity and gravity assist manoeuvres.
In Proceedings of 54th International Astronautical Congress, (2003), pp. 1-11
[Petropoulos and Longuski, 2004]
A.E. Petropoulos, J.M. Longuski.
Shape-Based algorithm for automated design of low-thrust, gravity-assist trajectories, Journal of Spacecraft and Rockets.
, 41 (2004), pp. 787-796
[Reyes-Sierra and Coello, 2006]
M. Reyes-Sierra, C.A. Coello.
Multi-objective particle swarm optimizers: A survey of the state-of-the-art.
International Journal of Computational Intelligence Research, (2006), pp. 287-308
doi=10.1.1.138.1829
[Schneider et al., 2008]
S. Schneider, T. Hawkins, M. Rosander, G. Vaghjiani, S. Chambreau, G. Drake.
Ionic Liquids as Hypergolic Fuels.
Energy Fuels, 22 (2008), pp. 2871-2872
[Schütze et al., 2009]
O. Schütze, M. Vasile, O. Junge, M. Dellnitz, D. Izzo.
Designing optimal low-thrust gravity-assist trajectories using space pruning and a multi-objective approach.
Engineering Optimization, 41 (2009), pp. 155-181
[Standish and Williams, 2010]
E.M. Standish, J.C. Williams.
Orbital ephemerides of the sun, moon and planets (PDF).
Int Astron Union Comm, (2010), pp. 4
[Vasile et al., 2010]
M. Vasile, E. Minisci, M. Locatelli.
Analysis of some global optimization algorithms for space trajectory design.
Journal of Spacecraft and Rockets, 47 (2010), pp. 334-344
[Vasile and Pascale, 2006]
M. Vasile, P.D. Pascale.
Preliminary design of multiple gravity-assist trajectories.
Journal of Spacecraft and Rockets, 43 (2006), pp. 794-805
[Vasile et al., 2005]
M. Vasile, L. Summerer, P.D. Pascale.
Design of Earth-Mars transfer trajectories using evolutionary-branching technique.
Acta Astronautica, 56 (2005), pp. 705-720
[Vinko and Izzo, 2008]
T. Vinko, D. Izzo.
Global optimisation heuristics and test problems for preliminary spacecraft trajectory design.
Technical report, European Space Agency, the Advanced Concepts Team, (2008),
[Wang et al., 2013]
S. Wang, H. Shang, W. Wu.
Interplanetary transfers employing invariant manifolds and gravity assist between periodic orbits.
Science China Technological Sciences, 56 (2013), pp. 786-794
[Wallace et al., 2011]
N. Wallace, P. Jameson, C. Saunders, M. Fehringer, C. Edwards, R. Floberghagen.
The GOCE Ion Propulsion Assembly – Lessons Learnt from the First 22 Months of Flight Operations.
En: Proc of the 32nd International Electric Propulsion Conf, Wiesbaden (Germany), (2011), pp. 1-21
[Whitley et al., 1994]
D. Whitley, S. Dominic, R. Das, C.W. Anderson.
Genetic reinforcement learning for neurocontrol problems.
Springer US, (1994), pp. 103-128 http://dx.doi.org/10.1007/978-1-4615-2740-4_5
[Zhu et al., 2012]
K. Zhu, R. Zhang, D. Xu, J. Wang, S. Li.
Venus round trip using solar sail.
Science China Physics, Mechanics and Astronomy, 55 (2012), pp. 1485-1499
[Zitzler et al., 2000]
E. Zitzler, L. Thiele, K. Deb.
Comparison of multiobjective evolutionary algorithms: Empirical results.
Evolutionary Computation, 8 (2000), pp. 173-195
Descargar PDF
Opciones de artículo