metricas
covid
Buscar en
Enfermedades Infecciosas y Microbiología Clínica
Toda la web
Inicio Enfermedades Infecciosas y Microbiología Clínica El problema creciente de la resistencia antibiótica en bacilos gramnegativos: s...
Journal Information
Vol. 28. Issue S2.
Infecciones intraabdominales
Pages 25-31 (September 2010)
Share
Share
Download PDF
More article options
Vol. 28. Issue S2.
Infecciones intraabdominales
Pages 25-31 (September 2010)
Full text access
El problema creciente de la resistencia antibiótica en bacilos gramnegativos: situación actual
The growing problem of antibiotic resistance in clinically relevant Gram-negative bacteria: current situation
Visits
7033
Luis Martínez-Martínez
Corresponding author
lmartinez@humv.es

Autor para correspondencia.
, Jorge Calvo
Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Santander, España
This item has received
Article information
Resumen

La resistencia a los antimicrobianos en bacterias gramnegativas de importancia clínica es un problema creciente, que en los últimos años ha sobrepasado la barrera nosocomial para afectar también a pacientes no hospitalizados. En enterobacterias, los principales aspectos de esta situación incluyen la resistencia a β-lactámicos (causada por β-lactamasas intrínsecas, β-lactamasas de espectro extendido, cefamicinasas plasmídicas y carbapenemasas, en especial cuando se producen en cepas con trastornos de la permeabilidad por alteraciones en porinas), y la resistencia a quinolonas, un problema multifactorial en el que se está reconociendo la importancia de los mecanismos mediados por plásmidos (proteínas Qnr, acetilasa, bombas de expulsión). Varios estudios en España y en otros países indican que las cepas con estos mecanismos están creciendo, siendo particularmente preocupante la expansión de cepas de Escherichia coli y de otras especies que producen β-lactamasas de espectro extendido (sobre todo de la familia CTX-M), que afectan a pacientes de la comunidad. Es cada vez más frecuente que estos mecanismos no se observen de forma aislada, sino combinados en una misma cepa, lo que conduce a la multirresistencia. Este problema es también de gran trascendencia clínica en diversos bacilos gramnegativos no fermentadores, incluyendo Pseudomonas aeruginosa y Acinetobacter baumannii, y en menor medida Stenotrophomonas maltophilia y algunas otras especies. En este último grupo de microorganismos la multirresistencia es consecuencia de la presencia de mecanismos intrínsecos (producción de distintos tipos de β-lactamasas, baja permeabilidad y expresión de bombas de expulsión activa) y de la adquisición de genes exógenos. Las dificultades terapéuticas llegan a su extremo en casos de resistencia a carbapenems (de causa multifactorial) y a polimixinas. Es necesario desarrollar nuevos compuestos con actividad frente a bacilos gramnegativos multirresistentes que, junto con otras medidas, ayuden a controlar la grave situación actualmente existente.

Palabras clave:
Enterobacterias
Multirresistencia
β-lactamasas
Carbapenems
Pseudomonas aeruginosa
Acinetobacter baumannii
Abstract

Resistance to antimicrobial agents in clinically relevant Gram-negative bacteria is an increasingly important problem, which in the last few years has spread from the hospital setting to the community. In enterobacteria, the main features of this situation include resistance to β-lactams and quinolones. β-Lactam resistance is caused by intrinsic β-lactamases, extended-spectrum β-lactamases, plasmid-mediated cephamycinases and carbapenemses, particularly when produced in strains with decreased permeability because of altered porin expression. Quinolone resistance is a multifactorial problem in which the importance of plasmid-mediated mechanisms (Qnr proteins, acetylase, active efflux pumps) is being recognized. Several studies in Spain and other countries show that strains with these resistance mechanisms are being isolated with increased frequency. Of particular concern is the spread of Escherichia coli and other species producing extended-spectrum β-lactamases (most frequently of the CTX-M family), affecting outpatients. Very commonly these mechanisms are simultaneously expressed within the same bacterial host, leading to a multiresistance phenotype. This problem is also of major clinical importance in non-fermenting Gramnegative rods, including Pseudomonas aeruginosa and Acinetobacter baumannii and, to a lesser extent, Stenotrophomonas maltophilia and some other species. Multiresistance in non-fermenting organisms results from the presence of intrinsic mechanisms (production of distinct β-lactamases, decreased permeability and expression of several active efflux pumps) and from the acquisition of exogenous genes. Therapeutic difficulties reach their maximum when bacteria express resistance to carbapenems (a multifactorial problem) or to polymyxins. New compounds with specific activity against multiresistant Gram-negative rods should be developed, which, together with other measures, would contribute to controlling the current serious situation.

Keywords:
Enterobacteria
Multiresistance
β-lactamases
Carbapenems
Pseudomonas aeruginosa
Acinetobacter baumannii
Full text is only aviable in PDF
Bibliografía
[1.]
R. Bonnet.
β-lactamines et enterobacteries.
Antibiogramme, pp. 141-162
[2.]
E.C. Nelson, B.G. Elisha.
Molecular basis of AmpC hyperproduction in clinical isolates of Escherichia coli.
Antimicrob Agents Chemother, 43 (1999), pp. 957-959
[3.]
D.M. Tracz, D.A. Boyd, R. Hizon, E. Bryce, A. McGeer, M. Ofner-Agostini, et al.
Canadian Nosocomial Infection Surveillance Program. ampC gene expression in promoter mutants of cefoxitin-resistant Escherichia coli clinical isolates.
FEMS Microbiol Lett, 270 (2007), pp. 265-271
[4.]
F. Fernández-Cuenca, L. Martínez-Martínez, G. Amblar, D.J. Biedenbach, R.N. Jones, A. Pascual.
Susceptibility to amoxycillin-clavulanate among clinical isolates of Escherichia coli resistant to cefoxitin.
Clin Microbiol Infect, 12 (2006), pp. 197-198
[5.]
N.D. Hanson, C.C. Sanders.
Regulation of inducible AmpC beta-lactamase expression among Enterobacteriaceae.
Curr Pharm Des, 5 (1999), pp. 881-894
[6.]
J.W. Chow, M.J. Fine, D.M. Shlaes, J.P. Quinn, D.C. Hooper, M.P. Johnson, et al.
Enterobacter bacteremia: clinical features and emergence of antibiotic resistance during therapy.
Ann Intern Med, 115 (1991), pp. 585-590
[7.]
W.L. Yu, W.C. Ko, K.C. Cheng, H.E. Chen, C.C. Lee, Y.C. Chuang.
Institutional spread of clonally related Serratia marcescens isolates with a novel AmpC cephalosporinase (S4): a 4-year experience in Taiwan.
Diagn Microbiol Infect Dis, 61 (2008), pp. 460-467
[8.]
D.L. Paterson, R.A. Bonomo.
Extended-Spectrum β-Lactamases: a clinical update.
Clin Microbiol Rev, 18 (2005), pp. 657-686
[9.]
L. Martínez-Martínez, S. Hernández-Alles, S. Alberti, J.M. Tomás, V.J. Benedi, G.A. Jacoby.
In vivo selection of porin-deficient mutants of Klebsiella pneumoniae with increased resistance to cefoxitin and expanded-spectrum-cephalosporins.
Antimicrob Agents Chemother, 40 (1996), pp. 342-348
[10.]
L. Poirel, C. Heritier, I. Podglajen, W. Sougakoff, L. Gutmann, P. Nordmann.
Emergence in Klebsiella pneumoniae of a chromosome-encoded SHV beta-lactamase that compromises the efficacy of imipenem.
Antimicrob Agents Chemother, 47 (2003), pp. 755-758
[11.]
L. Martínez-Martínez, A. Pascual, S. Hernández-Alles, D. Álvarez-Díaz, A.I. Suárez, J. Tran, et al.
Roles of beta-lactamases and porins in activities of carbapenems and cephalosporins against Klebsiella pneumoniae.
Antimicrob Agents Chemother, 43 (1999), pp. 1669-1673
[12.]
J. Oteo, A. Delgado-Iribarren, D. Vega, V. Bautista, M.C. Rodríguez, M. Velasco, et al.
Emergence of imipenem resistance in clinical Escherichia coli during therapy.
Int J Antimicrob Agents, 32 (2008), pp. 534-537
[13.]
A. Mena, V. Plasencia, L. García, O. Hidalgo, J.I. Ayestarán, S. Alberti, et al.
Characterization of a large outbreak by CTX-M-1-producing Klebsiella pneumoniae and mechanisms leading to in vivo carbapenem resistance development.
J Clin Microbiol, 44 (2006), pp. 2831-2837
[14.]
J. Rodríguez-Baño, M.D. Navarro, L. Romero, L. Martínez-Martínez, M.A. Muniain, E.J. Perea, et al.
Epidemiology and clinical features of infections caused by extendedspectrum beta-lactamase-producing Escherichia coli in nonhospitalized patients.
J Clin Microbiol, 42 (2004), pp. 1089-1094
[15.]
J.R. Hernández, A. Pascual, R. Cantón, L. Martínez-Martínez.
Grupo de Estudio de Infeccion Hospitalaria (GEIH). Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in spanish hospitals (GEIH-BLEE Project 2002).
Enferm Infecc Microbiol Clin, 21 (2003), pp. 77-82
[16.]
J.R. Hernández, L. Martínez-Martínez, R. Cantón, T.M. Coque, A. Pascual.
Spanish Group for Nosocomial Infections (GEIH). Nationwide study of Escherichia coli and Klebsiella pneumoniae producing extended-spectrum beta-lactamases in Spain.
Antimicrob Agents Chemother, 49 (2005), pp. 2122-2125
[17.]
M.A. Díaz, J.R. Hernández, L. Martínez-Martínez, J. Rodríguez-Baño, A. Pascual.
Grupo de Estudio de Infección Hospitalaria (GEIH). Escherichia coli y Klebsiella pneumoniae productoras de beta-lactamasas de espectro extendido en hospitales españoles: segundo estudio multicéntrico (proyecto GEIH-BLEE 2006).
Enferm Infecc Microbiol Clin, 27 (2009), pp. 496-502
[18.]
K. Diestra, T.M. Coque, E. Miró, J. Oteo, C.J. Nicolau, J. Campos, et al.
Red Española de Investigación en Patología Infecciosa. Caracterización y epidemiología molecular de betalactamasas de espectro extendido en Escherichia coli y Klebsiella pneumoniae en once hospitales españoles (2004).
Enferm Infecc Microbiol Clin, 26 (2008), pp. 404-410
[19.]
J. Oteo, K. Diestra, C. Juan, V. Bautista, A. Novais, M. Pérez-Vázquez, et al.
Spanish Network in Infectious Pathology Project (REIPI). Extended-spectrum beta-lactamase producing Escherichia coli in Spain belong to a large variety of multilocus sequence typing types, including ST10 complex/A, ST23 complex/A and ST131/B2.
Int J Antimicrob Agents, 34 (2009), pp. 173-176
[20.]
A. Reyes, H. Bello, M. Domínguez, S. Mella, R. Zemelman, G. González.
Prevalence and types of class 1 integrons in aminoglycoside-resistant Enterobacteriaceae from several Chilean hospitals.
J Antimicrob Chemother, 51 (2003), pp. 317-321
[21.]
L. Martínez-Martínez, A. Pascual, M.C. Conejo, I. García, P. Joyanes, A. Domenech-Sánchez, et al.
Energy-dependent accumulation of norfloxacin and porin expression in clinical isolates of Klebsiella pneumoniae and relationship to extended-spectrum beta-lactamase production.
Antimicrob Agents Chemother, 46 (2002), pp. 3926-3932
[22.]
J. Rodríguez-Baño, A. Pascual.
Clinical significance of extended-spectrum beta-lactamases.
Expert Rev Anti Infect Ther, 6 (2008), pp. 671-683
[23.]
G.A. Jacoby.
AmpC beta-lactamases.
Clin Microbiol Rev, 22 (2009), pp. 161-182
[24.]
F.J. Pérez-Pérez, N.D. Hanson.
Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR.
J Clin Microbiol, 40 (2002), pp. 2153-2162
[25.]
C. Mata, E. Miró, A. Rivera, B. Mirelis, P. Coll, F. Navarro.
Prevalence of acquired AmpC beta-lactamases in Enterobacteriaceae lacking inducible chromosomal ampC genes at a Spanish hospital from 1999 to 2007.
Clin Microbiol Infect, (2009),
[26.]
M. Tato, T.M. Coque, P. Ruiz-Garbajosa, V. Pintado, J. Cobo, H.S. Sader, et al.
Complex clonal and plasmid epidemiology in the first outbreak of Enterobacteriaceae infection involving VIM-1 metallo-beta-lactamase in Spain: toward endemicity?.
Clin Infect Dis, 45 (2007), pp. 1171-1178
[27.]
P. Nordmann, L. Poirel.
Emerging carbapenemses in Gram-negative aerobes.
Clin Microbiol Infect, 8 (2002), pp. 321-331
[28.]
L. Martínez-Martínez, A. Pascual, G.A. Jacoby.
Quinolone resistance from a transferable plasmid.
[29.]
L. Martínez-Martínez, A. Pascual, I. García, J. Tran, G.A. Jacoby.
Interaction of plasmid and host quinolone resistance.
J Antimicrob Chemother, 51 (2003), pp. 1037-1039
[30.]
J.M. Rodríguez-Martínez, C. Pichardo, I. García, M.E. Pachón-Ibáñez, F. Docobo-Pérez, A. Pascual, et al.
Activity of ciprofloxacin and levofloxacin in experimental pneumonia caused by Klebsiella pneumoniae deficient in porins, expressing active efflux and producing QnrA1.
Clin Microbiol Infect, 14 (2008), pp. 691-697
[31.]
L. Martínez-Martínez, M.E. Cano, J.M. Rodríguez-Martínez, J. Calvo, A. Pascual.
Plasmid-mediated quinolone resistance.
Expert Rev Anti Infect Ther, 6 (2008), pp. 685-711
[32.]
M.E. Cano, J.M. Rodríguez-Martínez, J. Agüero, A. Pascual, J. Calvo, J.M. García-Lobo, et al.
Detection of plasmid-mediated quinolone resistance genes in clinical isolates of Enterobacter spp. in Spain.
J Clin Microbiol, 47 (2009), pp. 2033-2039
[33.]
S. Lavilla, J.J. González-López, M. Sabaté, A. García-Fernández, M.N. Larrosa, R.M. Bartolomé, et al.
Prevalence of qnr genes among extended-spectrum beta-lactamase-producing enterobacterial isolates in Barcelona, Spain.
J Antimicrob Chemother, 61 (2008), pp. 291-295
[34.]
M.E. Cano, J. Calvo, J. Agüero, J.M. Rodríguez-Martínez, A. Pascual, L. Martínez-Martínez.
Plasmid-mediated quinolone resistance among enterobacteria with reduced susceptibility or resistant to ciprofloxacin but susceptible to nalidixic acid.
47th Interscience Conference on Antimicrobial Agents and Chemotherapy, (2007),
[35.]
N. Mesaros, P. Nordmann, P. Plésiat, M. Roussel-Delvallez, J. Van Eldere, Y. Glupczynski, et al.
Pseudomonas aeruginosa: resistance and therapeutic options at the turn of the new millennium.
Clin Microbiol Infect, 13 (2007), pp. 560-578
[36.]
J.M. Rodríguez-Martínez, L. Poirel, P. Nordmann.
Extended-spectrum cephalosporinases in Pseudomonas aeruginosa.
Antimicrob Agents Chemother, 53 (2009), pp. 1766-1771
[37.]
E. Bouza, F. García-Garrote, E. Cercenado, M. Marín, M.S. Díaz, I. Sánchez Romero, et al.
Grupo Español para el estudio de Pseudomonas aeruginosa: Pseudomonas aeruginosa: a multicenter study in 136 hospitals in Spain.
Rev Esp Quimioter, 16 (2003), pp. 41-52
[38.]
O. Gutiérrez, C. Juan, E. Cercenado, F. Navarro, E. Bouza, P. Coll, et al.
Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa isolates from Spanish hospitals.
Antimicrob Agents Chemother, 51 (2007), pp. 4329-4335
[39.]
D.M. Livermore.
Of Pseudomonas, porins, pumps and carbapenems.
J Antimicrob Chemother, 47 (2001), pp. 247-250
[40.]
A. Oliver.
Impact of dissemination of metallo-beta-lactamase-producing multidrug-resistant Pseudomonas aeruginosa in hospitals: present and future.
Enferm Infecc Microbiol Clin, 27 (2009), pp. 255-256
[41.]
D. Landman, C. Georgescu, D.A. Martin, J. Quale.
Polymyxins revisited.
Clin Microbiol Rev, 21 (2008), pp. 449-465
[42.]
A.Y. Peleg, H. Seifert, D.L. Paterson.
Acinetobacter baumannii: emergence of a successful pathogen.
Clin Microbiol Rev, 21 (2008), pp. 538-582
[43.]
F. Fernández-Cuenca, A. Pascual, A. Ribera, J. Vila, G. Bou, J.M. Cisneros, et al.
Grupo de Estudio de Infección Hospitalaria (GEIH). Clonal diversity and antimicrobial susceptibility of Acinetobacter baumannii isolated in Spain. A nationwide multicenter study: GEIH-Ab project (2000).
Enferm Infecc Microbiol Clin, 22 (2004), pp. 267-271
[44.]
C. Fernández-Mazarrasa, O. Mazarrasa, J. Calvo, A. Del Arco, L. Martínez-Martínez.
High concentrations of manganese in Mueller-Hinton agar increase MICs of tigecycline determined by Etest.
J Clin Microbiol, 47 (2009), pp. 827-829
[45.]
A. Ribera, J. Vila, F. Fernández-Cuenca, L. Martínez-Martínez, A. Pascual, A. Beceiro, et al.
Spanish Group for Nosocomial Infection (GEIH). Type 1 integrons in epidemiologically unrelated Acinetobacter baumannii isolates collected at Spanish hospitals.
Antimicrob Agents Chemother, 48 (2004), pp. 364-365
[46.]
F. Fernández-Cuenca, L. Martínez-Martínez, M.C. Conejo, J.A. Ayala, E.J. Perea, A. Pascual.
Relationship between beta-lactamase production, outer membrane protein and penicillin-binding protein profiles on the activity of carbapenems against clinical isolates of Acinetobacter baumannii.
J Antimicrob Chemother, 51 (2003), pp. 565-574
[47.]
J.M. Cisneros, J. Rodríguez-Baño, F. Fernández-Cuenca, A. Ribera, J. Vila, A. Pascual, et al.
Spanish Group for Nosocomial Infection (GEIH). Risk-factors for the acquisition of imipenem-resistant Acinetobacter baumannii in Spain: a nationwide study.
Clin Microbiol Infect, 11 (2005), pp. 874-879
[48.]
M. Denton, K.G. Kerr.
Microbiological and clinical aspects of infection associated with Stenotrophomonas maltophilia.
Clin Microbiol Rev, 11 (1998), pp. 57-80
[49.]
C.H. Lai, C.Y. Chi, H.P. Chen, T.L. Chen, C.J. Lai, C.P. Fung, et al.
Clinical characteristics and prognostic factors of patients with Stenotrophomonas maltophilia bacteremia.
J Microbiol Immunol Infect, 37 (2004), pp. 350-358
Copyright © 2010. Elsevier España S.L.. Todos los derechos reservados
Download PDF
Article options
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos