covid
Buscar en
Estudios Gerenciales
Toda la web
Inicio Estudios Gerenciales Different Impact Channels of Education on Poverty
Journal Information
Vol. 26. Issue 114.
Pages 13-37 (January - March 2010)
Share
Share
Download PDF
More article options
Vol. 26. Issue 114.
Pages 13-37 (January - March 2010)
Open Access
Different Impact Channels of Education on Poverty
Canales de impacto de la educacin en la pobreza
Differentes canais de impacto da educação na pobreza
Visits
2034
Blanca Zuluaga Díaz
Corresponding author
bzuluaga@icesi.edu.co

Dirigir correspondencia a: Universidad Icesi, Calle 18 No. 122-135, Cali, Colombia
PhD in Economics (candidata), Universidad Católica de Lovaina, Bélgica
Profesora tiempo completo, Departamento de Economía, Universidad Icesi, Colombia
Grupo de investigación “Economía, políticas públicas y métodos cuantitativos”, Universidad Icesi, Colombia
Grupo de Economía Pública – CES, Universidad Católica de Lovaina, Bélgica
This item has received

Under a Creative Commons license
Article information
Abstract

This article analyzes both the monetary and non-monetary effects of the education level of the head of the household on poverty. We propose that schooling returns should not be thought as a single number - usually the schooling coefficient in an income equation - but as a set of elements whose length depends on the number of identified poverty dimensions. The monetary analysis employs the Quantile Regression technique, very helpful especially when one is interested in extremes of the income distribution function. Our results show differences across quantiles of the returns. We also found interesting dissimilarities by gender and urban-rural location. Exploring the non-pecuniary returns, we found that the education of the head positively influences family health and housing conditions.

Keywords:
Returns to education
poverty
quantile regression
Resumen

En este artículo se analizan los efectos monetarios y no monetarios que tiene en la pobreza el nivel de educación del jefe de familia. Se plantea que los retornos a la educación no deben ser vistos como una cifra–generalmente un coeficiente de educación en una ecuación para el cálculo de los ingresos– sino como una serie de elementos cuya duración depende del número de aspectos identificados de la pobreza. Se utilizó la técnica de regresión por cuantiles, la cual es útil cuando se está interesado en los extremos de la función de distribución de ingresos. Los resultados demuestran diferencias entre los cuantiles de los retornos. Se encontraron diferencias interesantes por género y ubicación rural/urbana. Una exploración de los retornos no pecuniarios reveló que la educación del jefe de familia influye positivamente en las condiciones de salud y vivienda de la familia.

Palabras Clave:
Retornos a la educación
pobreza
regresión por cuantiles
Resumo

O artigo analisa os efeitos monetários e os não-monetários do nível de escolaridade do chefe de família na situação de pobreza. Propomos que o rendimento da escolaridade não seja pensado como um simples número– usualmente o coeficiente de escolaridade em uma equação da renda–mas como um conjunto de elementos cuja extensão depende da quantidade de dimensões de pobreza identificadas. A análise monetária usa a técnica de Regressão Quantil, muito útil especialmente quando estamos interessados nos extremos da função de distribuição das rendas. Nossos resultados mostram diferenças entre os quantis dos retornos. Também encontrámos interessantes desigualdades conforme o sexo e a localização urbana-rural. Explorando os retornos não pecuniários, descobrimos que a educação do chefe de família influencia positivamente a saúde familiar e as condições de habitação.

Palavras Chave:
Retornos da educação
pobreza
regressão quantil
Full text is only aviable in PDF
Bibliographic References
[1.]
J. Angrist, A. Krueger.
Does compulsory schooling attendance affect schooling and earnings?.
Quarterly Journal of Economics, 106 (1991), pp. 979-1014
[2.]
Angrist, J. and Krueger. A. (1992). Estimating the payoff to schooling using the Vietnam-Era draft lottery (NBER Working Paper No. 4067). Available at: http://www.nber.org/papers/w4067.
[3.]
O. Ashenfelter, A. Krueger.
Estimates of the economic return to schooling from a new sample of twins.
American Economic Review, 84 (1994), pp. 1157-1173
[4.]
A.B. Atkinson, F. Bourguignon.
The comparison of Economics Multi-dimensioned distribution of Economics Status.
Review of Economics Studies, 49 (1982), pp. 183-201
[5.]
G. Becker.
A theory of the allocation of time.
Economic Journal, 75 (1965), pp. 493-517
[6.]
G. Becker.
Human Capital, Columbia University Press, (1993),
[7.]
G. Becker, G. Lewis.
On the interaction between quantity and quality of children.
Journal of Political Economy, 81 (1973), pp. 279-288
[8.]
B. Borooah.
Logit and Probit: ordered and multinomial models.
Sage, (2002),
[9.]
F. Bourguignon, S. Chakravarty.
A family of multidimensional poverty measures.
Advances in econometrics Income Distribution and Scientific Methodology, pp. 331-344
[10.]
F. Bourguignon, S. Chakravarty.
The measurement of multidimensional poverty.
Journal of Economic Inequality, 1 (2003), pp. 25-49
[11.]
Card, D. (1993). Using Geographic Variation in College Proximity to Estimate the Return to Schooling (NBER Working Paper No. 4483). Available at: http://www.nber.org/papers/w4483.
[12.]
A. Cheser.
Instrumental values.
Centre for Microdata Methods and Practice, Institute for Fiscal Studies and University of London, (2005),
[13.]
Chernozhukov, V. and Hansen, C. (2001). An IV model of Quantile Treatment Effects (Working paper MIT). Available at: http://www.mit.edu/~vchern/papers/ch_iqr_ema.pdf.
[14.]
Chernozhukov, V. and Hansen, C. (2004). Instrumental variable quantile regression (Working paper MIT). Available at: http://www.mit.edu/~vchern/papers/ch_IVQR_2001_rev_Oct24_2004.pdf.
[15.]
V. Chernozhukov, C. Hansen.
Instrumental quantile regression inference for structural and treatment effect models.
Journal of Econometrics, 132 (2005), pp. 491-525
[16.]
M. Coleman, L. Ganong.
Handbook of contemporary families.
Sage, (2003),
[17.]
S. Ettner.
New evidence on the relationship between income and health.
Journal of Health Economics, 15 (1996), pp. 67-85
[18.]
J. Foster, J. Greer, E. Thorbecke.
Notes and comments a class of decomposable poverty measures.
Econometrica, 52 (1984), pp. 761-766
[19.]
N. González, J. Gómez, J. Mora, B. Zuluaga.
Las ganancias de señalizar en el mercado laboral en Cali.
Estudios Gerenciales, 92 (2004), pp. 105-128
[20.]
Grossman, M. (2005). Education and non-market outcomes. (NBER Working Paper No. 11582). Available at: http://www.nber.org/papers/w11582.pdf.
[21.]
C. Harmon, I. Walker.
Estimates for the economic return to schooling for UK.
American Economic Review, 85 (1995), pp. 1278-1286
[22.]
R. Haveman, B. Wolfe.
Schooling and economic well-Being: The role of non-market effects.
Journal of Human Resources, 19 (1984), pp. 378-407
[23.]
T. Hungerford, G. Solon.
Sheepskin Effects in the Returns to Education.
Review of Economics and Statistics, 69 (1987), pp. 175-177
[24.]
D. Kenkel.
Health Behavior, Health Knowledge, and Schooling.
Journal of Political Economy, 99 (1991), pp. 287-305
[25.]
R. Koenker.
Quantile Regressions.
Cambridge University Press, (2005),
[26.]
R. Koenker, G. Bassett.
Regression Quantiles.
Econometrica, 46 (1978), pp. 33-50
[27.]
R. Koenker, K. Hallock.
Quantile Regression.
Journal of Economic Perspectives, 15 (2001), pp. 143-156
[28.]
R. Layard, G. Psacharopoulos.
The Screening Hypothesis and the Returns to Education.
Journal of Political Economy, 82 (1974), pp. 985-998
[29.]
T. Lemieux.
The “Mincer Equation” Thirty Years after Schooling, Experience, and Earnings.
A Pioneer of Modern Labor Economics,
[30.]
R. Michael.
The Effect of Education on Efficiency in Consumption.
Columbia University Press for the NBER, (1972),
[31.]
Michael, R.T. and Willis, R. (1976). Contraception and Fertility: Household Production under Uncertainty. In N.E. Terleckyj (Ed.), Household Production and Consumption Studies in Income and Wealth (pp. 25-98), 40.
[32.]
J. Mincer.
Schooling Experience and Earnings.
Columbia University Press for the National Bureau of Economic Research, (1974),
[33.]
G. Psacharopoulos, H. Patrinos.
Returns to investment in education: a further update.
Education Economics, 12 (2004), pp. 111-134
[34.]
J. Rodríguez, C. Ramírez.
Pobreza en Colombia: tipo de medición y evaluación de políticas en los años 1950 y 2000.
Estudios Gerenciales, 85 (2002), pp. 81-107
[35.]
T. Schultz.
Investment in Human Capital.
American Economic Review, 51 (1961), pp. 1-17
[36.]
T. Schultz.
The value of children: an economic perspective.
Journal of Political Economy, 81 (1973), pp. 2-13
[37.]
A. Sen.
Poverty: An ordinal approach to measurement.
Econometrica, 44 (1976), pp. 219-231
[38.]
A. Sen.
Commodities and capabilities.
North- Holland, (1985),
[39.]
A. Sen.
Development as Freedom.
Knopf, (1999),
[40.]
J. Strauss.
Households Communities, and Preschool Children's Nutrition Outcomes: Evidence from Rural Côte d’Îvoire.
Economic Development and Cultural Change, 38 (1990), pp. 231-261
[41.]
K.Y. Tsui.
Multidimensional poverty Indices.
Chinese University of Hong Kong, (1994),
[42.]
K.Y. Tsui.
Multidimensional poverty indices.
Social Choice and Welfare, 19 (2002), pp. 69-94
[43.]
P. Trostel, I. Walker, P. Woolley.
Estimates of the economic return to schooling for 28 countries.
Labour Economics, 9 (2002), pp. 1-16
[44.]
M. Verbeek.
A guide to modern econometrics.
Edited by John Wiley and sons, (2000),
[45.]
Williams, D. (2002). Returns to education and experience in self-employment: evidence from Germany. (IRISS Working Paper No. 2002-04 CEPS/INSTEAD). Available at: http://iriss.ceps.lu/documents/irisswp27.pdf.
[46.]
R. Willis.
A new approach to the Economic theory of fertility behaviour.
Journal of Political Economy, 81 (1973), pp. 14-64
[47.]
J. Wooldridge.
Econometric Analysis of Cross Section and Panel Data.
The IMT Press, (2002),
[48.]
B. Zuluaga, D. Bonilla.
El papel de las Instituciones educativas públicas en la reducción de la pobreza.
Estudios Gerenciales, 97 (2005), pp. 31-59

I am grateful to the Colombian Department of Statistics (DANE) for providing the database. The support and comments of my supervisor Erik Schokkaert have been fundamental. I am also grateful to professors Paul de Grauwe and Geert Dhaene, and my colleagues Bram Thuysbaert and Julio Cesar Alonso, who gave useful comments to an earlier version of the article.

Copyright © 2010. Universidad ICESI
Download PDF
Article options