metricas
covid
Buscar en
Neurología (English Edition)
Toda la web
Inicio Neurología (English Edition) Thalamic metabolism and neurological outcome after traumatic brain injury. A vox...
Journal Information
Vol. 25. Issue 3.
Pages 174-180 (April 2010)
Share
Share
Download PDF
More article options
Vol. 25. Issue 3.
Pages 174-180 (April 2010)
Full text access
Thalamic metabolism and neurological outcome after traumatic brain injury. A voxel-based morphometric FDG-PET study
Metabolismo talámico y situación neurológica tras un traumatismo craneoencefálico. Estudio mediante PET-FDG y morfometría basada en vóxel
Visits
1461
N. Lulla,b, E. Noéc,
Corresponding author
enoe@comv.es

Author for correspondence.
, J.J. Lulla, J. García-Panacha,c, G. García-Martíd, J. Chirivellac, J. Ferric, R. Sopenae, L. de La Cuevaf, M. Roblesa
a ITACA Grupo de Informática Biomédica, Instituto ITACA, Universidad Politécnica de Valencia, Valencia, Spain
b Universidad CEU Cardenal Herrera, Valencia, Spain
c Servicio de Daño Cerebral Hospitales NISA, Instituto Valenciano de Neurorrehabilitación (IVAN), Valencia, Spain
d Hospital Quirón, Valencia, Spain
e Servicio de Medicina Nuclear, Hospital 9 de Octubre, Valencia, Spain
f Servicio de Medicina Nuclear, Hospital Miguel Servet, Zaragoza, Spain
This item has received
Article information
Abstract
Objective

To study the relationship between thalamic metabolism and neurological outcome in patients who had sustained a traumatic brain injury (TBI).

Methods

Nineteen patients who had sustained a severe TBI and ten control subjects were included in this study. Six of the 19 patients had a low level of consciousness (vegetative state or minimally conscious state), while thirteen showed normal consciousness. All patients underwent an 18F-FDG PET, 459.4±470.9 days after the TBI. The FDG-PET images were normalised in intensity, with a metabolic template being created from data derived from all subjects. The thalamic trace was generated automatically with a mask of the region of interest to evaluate its metabolism. A comparison between the two groups was carried out by a two sample voxel-based T-test, under the General Linear Model (GLM) framework.

Results

Patients with low consciousness had lower thalamic metabolism (MNI-Talairach coordinates: 12, —24, 18; T=4.1) than patients with adequate awareness (14, —28, 6; T=5.5). Control subjects showed the greatest thalamic metabolism compared to both patients groups. These differences in metabolism were more pronounced in the internal regions of the thalamus.

Conclusions

The applied method may be a useful ancillary tool to assess neurological outcomes after a TBI, since it permits an objective quantitative assessment of metabolic function for groups of subjects. Our results confirm the vulnerability of the thalamus to suffering the effects of the acceleration-deceleration forces generated during a TBI. It is hypothesized that patients with low thalamic metabolism represent a subset of subjects highly vulnerable to neurological and functional disability after TBI.

Keywords:
Voxel-based analysis
Consciousness
FDG-PET
Prognostic
Thalamus
Traumatic brain injury
Positron emission tomography
Resumen
Objetivos

: Estudiar la relación entre el metabolismo talámico y la situación neurológica en pacientes que han sufrido un traumatismo craneoencefálico (TCE).

Material y métodos

: Se incluyó a 19 pacientes que habían sufrido un TCE grave y 10 sujetos control. De los 19 pacientes, 6 presentaban un grado de alerta bajo (estado vegetativo o estado de mínima conciencia), mientras que 13 mostraban un grado de alerta normal. A todos los pacientes se les realizó una tomografía con emisión de positrones (PET) con 18-fluorodesoxiglucosa (18F-FDG) 459,4 ± 470,9 días después del TCE. Las imágenes de PET-FDG se normalizaron en intensidad, creándose posteriormente una plantilla metabólica del grupo entre todos los sujetos. El trazado talámico se generó automáticamente con una máscara de la región de interés. Se comparó el metabolismo talámico de los dos grupos de pacientes respecto al grupo control, para ello se utilizó un método de análisis basado en vóxel, con significación estadística, p<0,05 corregido para múltiples comparaciones.

Resultados

: Los pacientes con grado de alerta bajo mostraron menor metabolismo talámico (coordenadas MNI-Talairach, 12, —24, 18; T = 4,1), con respecto a los sujetos control, que los pacientes con grado de alerta adecuado (14, —28, 6; T = 5,5). Estas diferencias en el metabolismo fueron más acentuadas en las regiones internas del tálamo.

Conclusiones

: La PET-FDG puede ser una herramienta útil para valorar la situación neurológica después de un TCE. El método utilizado permite una evaluación objetiva y cuantitativa de imágenes de PET-FDG para grupos de sujetos. Nuestros resultados confirman la vulnerabilidad del tálamo a sufrir los efectos de las fuerzas de aceleración-desaceleración generadas durante un TCE.

Palabras clave:
Análisis basado en vóxel
Conciencia
PET-FDG
Pronóstico
Tálamo
Traumatismo craneoencefálico
Tomografía por emisión de positrones
Full text is only aviable in PDF
References
[1.]
J.M. Meythaler, J.D. Peduzzi, E. Eleftheriou, T.A. Novack.
Current concepts: diffuse axonal injury-associated traumatic brain injury.
Arch Phys Med Rehabil, 82 (2001), pp. 1461-1471
[2.]
J. Giacino, J. Whyte.
The vegetative and minimally conscious states: current knowledge and remaining questions.
J Head Trauma Rehabil, 20 (2005), pp. 30-50
[3.]
B. Jennett.
Thirty years of the vegetative state: clinical, ethical and legal problems.
Prog Brain Res, 150 (2005), pp. 537-543
[4.]
C.N. Gallagher, P.J. Hutchinson, J.D. Pickard.
Neuroimaging in trauma.
Curr Opin Neurol, 20 (2007), pp. 403-409
[5.]
N. Brandstack, T. Kurki, O. Tenovuo, H. Isoniemi.
MR imaging of head trauma: Visibility of contusions and other intraparenchymal injuries in early and late stage.
Brain Injury, 20 (2006), pp. 409-416
[6.]
R. Scheid, C. Preul, O. Gruber, C. Wiggins, D.Y. Von Cramon.
Diffuse axonal injury associated with chronic traumatic brain injury: evidence from T2*-weighted gradient-echo imaging at 3 T.
AJNR Am J Neuroradiol, 24 (2003), pp. 1049-1056
[7.]
J. Xu, I. Rasmussen, J. Lagopoulos, A. Håberg.
Diffuse axonal injury in severe traumatic brain injury visualized using high-resolution diffusion tensor imaging.
J Neurotrauma, 24 (2007), pp. 753-765
[8.]
E.D. Bigler.
Distinguished Neuropsychologist Award Lecture 1999. the lesion(s) in traumatic brain injury: implications for clinical neuropsychology.
Arch Clin Neuropsychol, 16 (2001), pp. 95-131
[9.]
M.A. Grados, B.S. Slomine, J.P. Gerring, R. Vasa, N. Bryan, M.B. Denckla.
Depth of lesion model in children and adolescents with moderate to severe traumatic brain injury: use of SPGR MRI to predict severity and outcome.
J Neurol Neurosurg Psychiatr, 70 (2001), pp. 350-358
[10.]
R. Firsching, D. Woischneck, S. Klein, S. Reissberg, W. Döhring, B. Peters.
Classiication of severe head injury based on magnetic resonance imaging.
Acta Neurochirurgica, 143 (2001), pp. 263-271
[11.]
G. tononi, C. Koch.
The neural correlates of consciousness: an update.
Ann N Y Acad Sci, 1124 (2008), pp. 239-261
[12.]
L. De la cueva, E. Noe, D. López-Aznar, et al.
Utilidad de la FDGPEt en la valoración del paciente con traumatismo craneoencefálico severo crónico.
Rev Esp Med Nucl, 25 (2006), pp. 89-97
[13.]
L. De la cueva-Barrao, E. Noe-Sebastian, P. Sopena-Novales, et al.
Relevancia clínica del PET-FDG en pacientes con traumatismos craneoencefálico severos.
Rev Neurol, 49 (2009), pp. 58-63
[14.]
JT Giacino, J. Hirsch, N. Schiff, S. Laureys.
Functional neuroimaging applications for assessment and rehabilitation planning in patients with disorders of consciousness.
Arch Phys Med Rehabil, 87 (2006), pp. S67-S76
[15.]
M. Ichise, D.G. chung, P. Wang, G. Wortzman, B.G. Gray, W. Franks.
Technetium-99m-HMPAO SPECT, CT and MRI in the evaluation of patients with chronic traumatic brain injury: a correlation with neuropsychological performance.
J Nucl Med, 35 (1994), pp. 217-226
[16.]
N. Hattori, S.C. Huang, H.M. Wu, et al.
Correlation of regional metabolic rates of glucose with Glasgow coma scale after traumatic brain injury.
J Nucl Med, 44 (2003), pp. 1709-1716
[17.]
S. Laureys, M.E. Faymonville, A. Luxen, M. Lamy, G. Franck, P. Maquet.
Restoration of thalamocortical connectivity after recovery from persistent vegetative state.
Lancet, 355 (2000), pp. 1790-1791
[18.]
S. Laureys, S. Goldman, C. Phillips, et al.
Impaired effective cortical connectivity in vegetative state: preliminary investigation using PET.
Neuroimage, 9 (1999), pp. 377-382
[19.]
N.D. Schiff, U. Ribary, D.R. Moreno, et al.
Residual cerebral activity and behavioural fragments can remain in the persistently vegetative brain.
Brain, 125 (2002), pp. 1210-1234
[20.]
J. Ashburner, K.J. Friston.
Voxel-based morphometry —the methods.
Neuroimage, 11 (2000), pp. 805-821
[21.]
C.D. Good, I.S. Johnsrude, J. Ashburner, R.N. Henson, K.J. Friston, R.S. Frackowiak.
A voxel-based morphometric study of ageing in 465 normal adult human brains.
Neuroimage, 14 (2001), pp. 21-36
[22.]
J.T. Giacino, S. Ashwal, N. childs, et al.
The minimally conscious state: deinition and diagnostic criteria.
Neurology, 58 (2002), pp. 349-353
[23.]
S.B. Marshall, C. cayard, M.A. Foulkes, et al.
The traumatic coma Data Bank: a nursing perspective.
Part I. J Neurosci Nurs, 20 (1988), pp. 253-257
[24.]
J.D. Gispert, J. Pascau, S. Reig, et al.
Inluence of the normalization template on the outcome of statistical parametric mapping of PET scans.
Neuroimage, 19 (2003), pp. 601-612
[25.]
J. Ashburner, K.J. Friston.
Nonlinear spatial normalization using basis functions.
Hum Brain Mapp, 7 (1999), pp. 254-266
[26.]
N. tzourio-Mazoyer, B. Landeau, D. Papathanassiou, et al.
Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain.
Neuroimage, 15 (2002), pp. 273-289
[27.]
C.R. Genovese, N.A. Lazar, T. Nichols.
Thresholding of statistical maps in functional neuroimaging using the false discovery rate.
Neuroimage, 15 (2002), pp. 870-878
[28.]
A. Fontaine, P. Azouvi, P. Remy, B. Bussel, Y. Samson.
Functional anatomy of neuropsychological deicits after severe traumatic brain injury.
Neurology, 53 (1999), pp. 1963-1968
[29.]
H. Gross, A. Kling, G. Henry, C. Herndon, H. Lavretsky.
Local cerebral glucose metabolism in patients with long-term behavioral and cognitive deicits following mild traumatic brain injury.
J Neuropsychiatry Clin Neurosc, 8 (1996), pp. 324-334
[30.]
J. Rudolf, M. Ghaemi, M. Ghaemi, W.F. Haupt, B. Szelies, W.D. Heiss.
Cerebral glucose metabolism in acute and persistent vegetative state.
J Neurosurg Anesthesiol, 11 (1999), pp. 17-24
[31.]
C. Tommasino, C. Grana, G. Lucignani, G. Torri, F. Fazio.
Regional cerebral metabolism of glucose in comatose and vegetative state patients.
J Neurosurg Anesthesiol, 7 (1995), pp. 109-116
[32.]
S. Laureys, C. Lemaire, P. Maquet, C. Phillips, G. Franck.
Cerebral metabolism during vegetative state and after recovery to consciousness.
J Neurol Neurosurg Psychiatry, 67 (1999), pp. 121
[33.]
H.U. Voss, A.M. Uluc, J.P. Dyke, et al.
Possible axonal regrowth in late recovery from the minimally conscious state.
J Clin Invest, 116 (2006), pp. 2005-2011
[34.]
J. Ashburner, K.J. Friston.
Why voxel-based morphometry should be used.
Neuroimage, 14 (2001), pp. 1238-1243
[35.]
J.H. Adams, D.I. Graham, B. Jennett.
the neuropathology of the vegetative state after an acute brain insult.
Brain, 123 (2000), pp. 1327-1338
[36.]
B. Jennett, J.H. Adams, L.S. Murray, D.I. Graham.
Neuropathology in vegetative and severely disabled patients after head injury.
Neurology, 56 (2001), pp. 486-490
[37.]
H.C. Kinney, J. Korein, A. Panigrahy, P. Dikkes, R. Goode.
Neuropathological indings in the brain of Karen Ann Quinlan. The role of the thalamus in the persistent vegetative state.
N Engl J Med, 330 (1994), pp. 1469-1475
[38.]
N.D. Schiff, J.T. Giacino, K. Kalmar, et al.
Behavioural improvements with thalamic stimulation after severe traumatic brain injury.
Nature, 448 (2007), pp. 600-603
[39.]
N. Nakayama, A. Okumura, J. Shinoda, T. Nakashima, T. Iwama.
Relationship between regional cerebral metabolism and consciousness disturbance in traumatic diffuse brain injury without large focal lesions: an FDG-PET study with statistical parametric mapping analysis.
J Neurol Neurosurg Psychiatr, 77 (2006), pp. 856-862
[40.]
S. Laureys, F. Perrin, C. Schnakers, M. Boly, S. Majerus.
Residual cognitive function in comatose, vegetative and minimally conscious states.
Curr Opin Neurol, 18 (2005), pp. 726-733
[41.]
S. Laureys, A.M. Owen, N.D. Schiff.
Brain function in coma, vegetative state, and related disorders.
Lancet Neurol, 3 (2004), pp. 537-546
[42.]
C.V. Anderson, D.M. Wood, E.D. Bigler, D.D. Blatter.
Lesion volume, injury severity, and thalamic integrity following head injury.
J Neurotrauma, 13 (1996), pp. 59-65
[43.]
A. Zeman.
Consciousness.
Brain, 124 (2001), pp. 1263-1289
[44.]
G.E. Alexander, M.D. Crutcher.
Functional architecture of basal ganglia circuits: neural substrates of parallel processing.
Trends Neurosci, 13 (1990), pp. 266-271
[45.]
J.W. Burruss, R.A. Hurley, K.H. Taber, R.A. Rauch, R.E. Norton, L.A. Hayman.
Functional neuroanatomy of the frontal lobe circuits.
Copyright © 2010. Sociedad Española de Neurología
Download PDF
Article options
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos