metricas
covid
Buscar en
Neurología (English Edition)
Toda la web
Inicio Neurología (English Edition) Experimental models in epilepsy
Información de la revista
Vol. 25. Núm. 3.
Páginas 181-188 (abril 2010)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 25. Núm. 3.
Páginas 181-188 (abril 2010)
Acceso a texto completo
Experimental models in epilepsy
Modelos experimentales en epilepsia
Visitas
1642
M.E. Garcia Garcia
Autor para correspondencia
mariugarciagarcia@hotmail.com

Author for correspondence.
, I. Garcia Morales, J. Matías Guiu
Instituto de Neurociencias, Servicio de Neurología, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas
Abstract
Introduction

Epilepsy is one of the neurological pathologies with the highest rate of incidence and with a significant number of negatives consequences. Current pharmacological treatments have an antiepileptic effect, allowing control over 70% of the patients, but they are not able to prevent the development of Epileptogenesis from occurring.

Method

We have reviewed the most relevant publications for experimental animal models with epilepsy by using the PubMed data base.

Results

We found a large number of publications related to different kinds of experimental models, both genetic (transgenic, genetically determined) and lesional, which appeared to resemble the different types of human epilepsy.

Conclusions

Even though many important improvements have been accomplished in the area of epilepsy in the last decades, there are still many aspects to be clarified. In this regard, experimental models might become a very useful means for a better understanding of pathophysiological mechanisms and in the search for more efficient treatments.

Keywords:
Epilepsy
Experimental models
Seizure
Epileptogenesis
Resumen
Introducción

La epilepsia es una de las enfermedades neurológicas más frecuentes, y además conlleva una tasa de consecuencias negativas muy importante, tanto para el paciente como para los familiares. Su manifestación clínica principal es la aparición de crisis epilépticas recurrentes, que en el 70–80% de los casos se controlan con la medicación. Sin embargo, a pesar de que van apareciendo nuevos fármacos para el control de las crisis, no disponemos todavía de fármacos que consigan evitar la epileptogénesis.

Método

Revisamos las publicaciones más relevantes de modelos animales experimentales en epilepsia utilizando para ello la base de datos de PubMed.

Resultados

Se han encontrado un amplio número de publicaciones sobre tipos de modelos experimentales tanto genéticos (transgénicos, genéticamente determinados) como lesionales (químicos o eléctricos), que intentan imitar los diferentes tipos de epilepsia en humanos.

Conclusiones

A pesar de que en las últimas décadas se han hecho importantes avances en el campo de la epilepsia, aún quedan muchos aspectos por dilucidar. En este sentido, los modelos experimentales pueden suponer una herramienta muy útil para el avance en el conocimiento de los mecanismos fisiopatológicos y en la búsqueda de tratamientos eficaces.

Palabras clave:
Epilepsia
Modelos experimentales
Crisis epiléptica
Epileptogénesis
El Texto completo está disponible en PDF
References
[1.]
R.S. Fisher, W. Van Emde Boas, W. Blume, C. Elger, P. Genton, P. Lee, et al.
Epileptic seizures and epilepsy: definitions proposed by the International League against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE).
[2.]
W.A. Hauser, J.F. Annengers, W.A. Rocca.
Descriptive epidemiology of epilepsy: contributions of population-based studies from Rochester.
Minnesota. Mayo Clinic Proceedings, 7 (1996), pp. 576-586
[3.]
J.A. French.
Refractory epilepsy: clinical overview.
[4.]
A.M. Kanner, A. Balabanov.
Depression and epilepsy. How closely related are they?.
Neurology, 58 (2002), pp. S27-S39
[5.]
A.M. Kanner.
Depression in epilepsy: a complex relation with unexpected consequences.
Curr Opin Neurol, 21 (2008), pp. 190-194
[6.]
C. De Cabo de la Vega, P. Villanueva Hernandez, A. Prieto Martin.
Neuroquímica de la epilepsia, neurotransmisión inhibitoria y modelos experimentales: nuevas perspectivas.
Rev Neurol, 42 (2006), pp. 159-168
[7.]
I. Cobos, M.E. Calcagnotto, A.J. Vilaythong, M.T. Thwin, J.L. Noebels, S.C. Barabans, et al.
Mice lacking Dlx1 show subtype-speciic loss of interneurons, reduced inhibition and epilepsy.
Nat Neurosci, 8 (2005), pp. 1059-1068
[8.]
U. Sayin, S. Osting, J. Hagen, P. Rutecki, T. Sutura.
Spontaneous seizures and loss of axo-axonic and axo-somatic inhibition induced by repeated brief seizures in Kindled rats.
J Neurosci, 23 (2003), pp. 2759-2768
[9.]
C.J. Vaughan, N. Delanty.
Pathophysiology of acute symptomatic seizures.
Seizures: medical causes and management, pp. 7-24
[10.]
R.J. Racine.
Modiications of seizure activity by electrical stimulation Motor seizures.
Electroencephalogr Clin Neurophysiol, 32 (1972), pp. 269-279
[11.]
P.J. Serrano-castro, J.C. Sánchez-Álvarez, T. García-Gómez.
Esclerosis mesial temporal (I): datos histológicos, hipótesis fisiopatológicas y factores etiológicos.
Rev Neurol, 25 (1997), pp. 584-589
[12.]
J.V. Nadler, B.W. Perr, C.W. cotman.
Selective reinnervation of hipoccampal area cA1 and the fascia dentate after destruction of CA3-CA4 afferents with Kainic acid.
Brain Res, 182 (1980), pp. 1-9
[13.]
R. Auvergne, Leré c, B. El Bahh, S. Arthaud, V. Lespinet, A. Rougier, et al.
Delayed kindling epileptogenesis and increased neuro-genesis in adult rats housed in an enriched environment.
Brain Res, 954 (2002), pp. 277-285
[14.]
J.M. Parent, T.W. Yu, R.T. Leibowitz, D.H. Geschwind, R.S. Sloviter, D.H. Lowenstein.
Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus.
J Neurosci, 17 (1997), pp. 3727-3738
[15.]
H.E. Scharfman, J.H. Goodman, A.L. Sollas.
Granule-like neurons at the hilar/CA3 border after status epilepticus and their synchrony with area CA3 pyramidal cells: functional implications of seizure-induced neurogenesis.
J Neurosci, 20 (2000), pp. 6144-6158
[16.]
C.E. Ribak, P.H. tran, I. Spigelman, M.M. Okazaki, J.V. Nadler.
Status epilepticus-induced hilar basal dendrites on rodent granule cells contribute to recurrent excitatory circuitry.
J Comp Neurol, 428 (2000), pp. 240-253
[17.]
Y. Ben-Ari.
Cell death and synaptic reorganizations produced by seizures.
Epilepsia, 42 (2001), pp. 5-7
[18.]
L.J. Willmore.
Postraumatic epilepsy; cellular mechanisms and implications for treatment.
Epilepsia, 31 (1990), pp. S67-S73
[19.]
St. Herman.
Epilepsy after brain insult. Targeting epileptogenesis.
Neurology, 59 (2002), pp. 21-26
[20.]
J. De Felipe.
chandelier cells epilepsy.
Brain, 122 (1999), pp. 1807-1822
[21.]
J. De Felipe, J.I. Arellano, L. Alonso, A. Muñoz.
Neuropatología de la epilepsia del lóbulo temporal. Alteraciones primarias y secundarias de los circuitos corticales y epileptogenicidad.
Rev Neurol, 34 (2002), pp. 401-408
[22.]
J.L. Noebels, M. Rees, R.M. Gardiner.
Molecular genetics and epilepsy genes.
Epilepsy: a comprehensive textbook, pp. 211-216
[23.]
N.A. Singh, C. Charlier, D. Stauffer, B.R. DuPont, R.J. Leach, R. Melis, et al.
A novel potassium channel gene KCNQ2, is mutated in an inherited epilepsy of newborns.
Nat Genet, 18 (1998), pp. 25-29
[24.]
J. Wagstaff, J.H.M. Knoll, J. Fleming, E.F. Kirkness, A. Martin Gllardo, F. Greenberg, et al.
Localization of the gene encoding the GABA (A) receptor B3 subunit to the Angelman/Prader Willi region of human chromosome 15.
AM J Hum Genet, 49 (1991), pp. 330-337
[25.]
J.L. Noebels.
Single-gene models of epilepsy.
3rd ed., pp. 227-238
[26.]
E.L. Van Luijtelaar, W.H. Drinkenburg, C.M. Van Rijn, A.M. Coenen.
Rat models of genetic absence epilepsy: what do EEG spike- wave discharges tell us about drug effects?.
Methods Find Exp Clin Pharmacol, 4 (2002), pp. 65-70
[27.]
P.J. Serrano-Castro, A. Arjona, J. Rubi-Callejon, G. Alonso-Verdegay, A. Huete-Hurtado.
Avances en el conocimiento d la etiologia y de la isiopatología de las epilepsias relejas.
Rev Neurol, 43 (2006), pp. 745-752
[28.]
C. Menini, Barrat C. Silva.
The photosensitive epilepsy of the baboon: a model of generalized relex epilepsy.
Relex epilepsies and relex seizures Advances in Neurology, pp. 29-47
[29.]
J.W. Dailey, C.E. Reigel, P.K. Mishra, P.C. Jobe.
Neurobiology of seizure predisposition in the genetically epilepsy-prone rat.
Epilepsy Res, 3 (1989), pp. 3-17
[30.]
G. La Gal-La Salle, P. Naquet.
Audiogenic seizures evoked in DBA/2 mice induce C-fos expression into subcortical auditory nuclei.
Brain Res, 518 (1990), pp. 308-312
[31.]
V. Fuentes-Santamaria, R. Cantos, J.C. Alvarado, N. Garcia-Atares, D.E. López.
Morphologic and neurochemical abnormalities in the auditory brainstem of the genetically epilepsy-prone hamster.
Epilepsia, 46 (2005), pp. 1027-1045
[32.]
H. Doose, W. Baier.
Genetics aspects of childhood epilepsy.
Cleve Clin J Med, 56 (1989), pp. S105-S110
[33.]
J.A Armijo, E.M. Valdizan, I. De las Cuevas, A. Cuadrado.
Avances en la fisiopatología de la epileptogénesis: aspectos moleculares.
Rev Neurol, 34 (2002), pp. 409-429
[34.]
D.H. Lowenstein, T. Bleck, R.L. Macdonald.
It's time to revise the deinition of status epilepticus.
Epilepsia, 40 (1999), pp. 120-122
[35.]
J. Tejeiro, S. Gomez.
Status epiléptico.
Rev Neurol, 6 (2003), pp. 661-679
[36.]
G.B. Young.
Status epilepticus and refractory status epilepticus: introductory and summary statements.
Adv Neurol, 97 (2006), pp. 83-85
[37.]
G.B. Young.
Status epilepticus and brain damage: pathology and pathophysiology.
Adv Neurol, 97 (2006), pp. 217-220
[38.]
D.G. Fujikawa.
Prolonged seizures and cellular injury: understanding the connection.
Epilepsy Behav, 7 (2005), pp. S3-S11
[39.]
C. Brandt, H. Potschka, W. Löscher, U. Ebert.
N-methyl-D-aspartate receptor blockade after status epilepticus protects against limbic brain damage but not against epilepsy in the Kainato model of temporal lobe epilepsy.
Neuroscience, 118 (2003), pp. 727-740
[40.]
J.W. Chen, C.G. Wasterlain.
Status epilepticus. Pathophysiology and management in adults.
Lancet Neurol, 5 (2006), pp. 246-256
[41.]
D.E. Naylor, H. Liu, C.G. Wasterlain.
Traficking of GABA (A) receptors, loss of inhibition, and a mechanism for pharmacoresistance in status epilepticus.
J Neurosci, 25 (2005), pp. 7724-7733
[42.]
W. Loscher, H. PostschKa.
Drug resistance in brain disease and the role of drug eflux transporters.
Nat Rev Neurosci, 6 (2005), pp. 591-602
[43.]
W. Löscher.
How to explain multidrug resistance in epilepsy?.
Epilepsy curr, 5 (2005), pp. 107-112
[44.]
C. Brandt, A. Heile, H. Postcka, T. Stoehr, W. Löscher.
Effects of the novel antiepileptic drug lacosamide on the development of amygdale kindling in rats.
Epilepsia, 47 (2006), pp. 1803-1809
[45.]
M. Sato, R.J. Racine, D.C. Mcintyre.
Kindling: Basic mechanisms and clinical validity.
Electroenceph Clin Neurophysiol, 76 (1999), pp. 459-472
[46.]
J.M. Silver, C. Shin, J.O. Mcnamara.
Antiepileptogenic effects of conventional anticonvulsants in the kindling model of epilepsy.
Ann Neurol, 29 (1991), pp. 356-363
[47.]
J.A. Wada.
Pharmacological prophylaxis in the kindling model of epilepsy.
Arch Neurol, 34 (1974), pp. 389-395
[48.]
W. Löscher, D. Donärk, C. Rundfelt.
Antiepileptogenic effects of the novel anticonvulsant levetiracetam in the kindling model of temporal lobe epilepsy.
J Pharmacol Exp ther, 284 (1998), pp. 474-479
[49.]
J.S. Lockard, W.C. Congdon, L.L. Ducharme.
Feasibility and safety of vagal stimulation in monkey model.
Epilepsia, 31 (1990), pp. 20-26
[50.]
V.M. Magdalena-Madrigal.
Estimulación eléctrica del nervio vago: de lo experimental a lo clínico.
Rev Neurol, 39 (2004), pp. 971-977
[51.]
A. Zagon, A.A. Kemeny.
Slow hyperpolarization in cortical neurons: a possible mechanism behind vagus nerve simulation therapy for refractory epilepsy?.
Epilepsia, 41 (2000), pp. 1382-1389
Copyright © 2010. Sociedad Española de Neurología
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos