Comparar el impacto pronóstico de la extensión de la enfermedad pulmonar en tomografía computarizada (TC) valorada de forma visual por un radiólogo experto y de manera automática por un sistema de inteligencia artificial (IA) en pacientes con neumonía COVID-19.
Material y métodosEstudio retrospectivo que incluyó pacientes con sospecha clínica de neumonía COVID-19 y valoración visual, y por IA de la extensión de la afectación pulmonar. Se dividió a los pacientes en grupos de mal (fallecimiento/UCI) y buen pronóstico (alta). Se realizaron análisis uni y multivariante (regresión logística) de las variables que demostraron diferencias significativas entre ambos grupos.
ResultadosLos pacientes de mal pronóstico presentaron más frecuentemente una mayor extensión de la afectación pulmonar de manera visual (estadios 3-4; 37,5 vs. 14,3%; p=0,001) y estimada por la IA (estadios 3-4; 35 vs. 6,2%; p<0,001). El coeficiente de correlación de concordancia radiólogo-IA fue excelente (0,905; p<0,001). La hipertensión arterial (OR: 4,26; p<0,001), las alteraciones analíticas de creatinina (OR: 5,63; p<0,001), lactato-deshidrogenasa (OR: 11,69; p<0,001) y dímero D (OR: 5,68; p<0,001) y la extensión del parénquima pulmonar afectado valorados visualmente (estadio 1 vs. 4 OR: 10,36; p=0,001) y por la IA (estadio 1 vs. 4 OR: 25; p=0,001) fueron las variables con mayor impacto pronóstico en el análisis univariante. Los modelos de análisis multivariante considerando la extensión valorada visualmente y por la IA no demostraron diferencias significativas entre ellos (AUC: 0,876 vs. 0,870; p=0,278).
ConclusiónLa valoración de la extensión del parénquima pulmonar afectado en las imágenes de la TC, aislada y en conjunto con factores clínicos y analíticos, demuestra valor pronóstico en los pacientes con neumonía COVID-19. No se observaron diferencias significativas entre la estimación visual del radiólogo y el sistema de detección automática basado en IA empleado en este estudio.
To compare the prognostic impact of the extent of lung disease detected on computed tomography (CT) when assessed visually by an expert radiologist compared to automatically by an artificial intelligence (AI) system in patients with COVID-19 pneumonia.
Material and methodsA retrospective study of patients with clinical suspicion of COVID-19 pneumonia which assessed the extent of lung involvement visually and by AI. Patients were divided into poor (death/ICU) and good (discharge) prognosis groups. Univariate and multivariate analyses (logistic regression) were performed on the variables that demonstrated significant differences between both groups.
ResultsPatients with a poor prognosis more frequently had greater lung involvement visually (stages 3-4; 37.5% vs 14.3%; P=.001) and by AI (stages 3-4; 35% vs 6.2%; P<.001). The radiologist-AI agreement correlation coefficient was excellent (0.905; P<.001). High blood pressure (OR 4.26; P0.001), alterations in levels of creatinine (OR 5.63; P<.001), lactate dehydrogenase (OR 11.69; P<.001) and D-dimer (OR 5.68; P<.001), and the extent of affected lung parenchyma assessed visually (stage 1 vs 4 OR 10.36; P=.001) and by AI (stage 1 vs 4 OR 25; P=.001) were the variables wit the greatest prognostic impact in the univariate analysis. The multivariate analysis models considering the extent assessed visually and by AI did not demonstrate any significant differences (AUC 0.876 vs 0.870; P=.278).
ConclusionThe extent of affected lung parenchyma on CT images demonstrates prognostic value both on their own and in conjunction with clinical factors and blood levels in patients with COVID-19 pneumonia. No significant differences were observed between the radiologist's visual estimate and the AI-based automatic detection system used in this study.